Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Mol Cell ; 82(7): 1244-1245, 2022 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-35395197

RESUMO

Ge et al. (2022) describes an inhibitory, post-translational modification of PTEN at C211 by fumarate, which offers new insight into the integration of PI3K signaling and metabolism via a potential feedforward regulatory mechanism involving a PI3K-glucose-fumarate-PTEN axis.


Assuntos
Fumaratos , Fosfatidilinositol 3-Quinases , PTEN Fosfo-Hidrolase/genética , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
2.
Adv Exp Med Biol ; 1361: 215-233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35230691

RESUMO

Over the last two decades, cancer researchers have taken the promise offered by the Human Genome Project and have expanded its capacity to use sequencing to identify the genomic alterations that give rise to and sustain individual tumors. This expansion has allowed researchers to identify and target highly recurrent alterations in specific cancer contexts, such as EGFR mutations in non-small cell lung cancer (Lynch et al, N Engl J Med 350:2129-2139, 2004; Sharifnia et al., Proc Natl Acad Sci U S A 111:18661-18666, 2014), BCR-ABL translocations in chronic myeloid leukemia (Deininger, Pharmacol Rev 55:401-423. https://doi.org/10.1124/pr.55.3.4 , 2003; Druker et al, N Engl J Med 344. 1038-1042, 2001; Druker et al, N Engl J Med 344:1031-1037. https://doi.org/10.1056/NEJM200104053441401 , 2001), or HER2 amplifications in breast cancer (Slamon et al, N Engl J Med 344:783-792. https://doi.org/10.1056/NEJM200103153441101 , 2001; Solca et al, Beyond trastuzumab: second-generation targeted therapies for HER-2-positive breast cancer. In: Sibilia M, Zielinski CC, Bartsch R, Grunt TW (eds) Drugs for HER-2-positive breast cancer. Springer, Basel, pp 91-107, 2011). Despite these advances in our capacity to identify the genetic alterations that drive tumor initiation, survival, and proliferation, our ability to target these alterations to provide effective treatment options for patients in need, particularly those with rare or advanced cancers, remains limited (Gould et al, Nat Med 21:431-439. https://doi.org/10.1038/nm.3853 , 2015). Patient-derived models of cancer offer one potential mechanism to overcome this barrier between the bench and bedside. Through the development and testing of patient-derived models of cancer, functional genomics efforts can identify tumor-specific drug sensitivities and thereby provide a connection between tumor genetics and effective therapeutics for patients in need of treatment options.Recognizing that cancer is a multifaceted set of disease states, the development of personalized models of cancer that can be used to compare treatment options, identify tumor-specific vulnerabilities, and guide clinical decision-making has tremendous potential for improving patient outcomes. This chapter will describe a representative set of patient-derived models of cancer, reviewing each of their strengths and weaknesses and highlighting how selecting a model to suit a specific question or context is critical. Each model comes with a unique set of pros and cons, making them more or less appropriate for each specific research or clinical question. As each model can be leveraged to gain new insights into cancer biology, the key to their deployment is to identify the most appropriate model for a specific context, while carefully considering the strengths and limitations of the selected model. When used appropriately, patient-derived models may prove to be the missing link needed to bring the promise of personalized oncology to fruition in the clinic.


Assuntos
Neoplasias da Mama , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Feminino , Humanos
3.
Cancer Res ; 82(12): 2216-2218, 2022 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-35702891

RESUMO

PI3K signaling plays an integral role in cells, coordinating the necessary alterations in cellular metabolism and programs to support survival and proliferation. In the first genome-wide analysis of alternative splicing in PIK3CA-mutant breast cancer, Ladewig and colleagues show that activating mutations in PIK3CA alter the use of known exons and splice junctions, leading to changes in gene expression and transcription factor activity that promote an oncogenic phenotype. Their work reveals a novel mechanism underlying the functional impact of PI3K signal activation in the context of breast cancer, where PIK3CA mutations are common and PI3K inhibitors are part of the standard of care. Their studies uncover a feedforward mechanism by which PI3K signaling enables a shift in the spectrum of translated splice variants as another method through which the PI3K pathway has evolved to regulate its own activity, thereby modifying the cellular response to upstream activation based on the signaling that has come before. These findings have profound implications for understanding the evolution of the PI3K pathway and the rewiring of cells in response to prolonged or repeated signal activation. See related article by Ladewig et al., p. 2269.


Assuntos
Neoplasias da Mama , Fosfatidilinositol 3-Quinases , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Feminino , Humanos , Mutação , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Splicing de RNA , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA