Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
Proc Natl Acad Sci U S A ; 105(5): 1466-71, 2008 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-18230722

RESUMO

TMC278 is a diarylpyrimidine (DAPY) nonnucleoside reverse transcriptase inhibitor (NNRTI) that is highly effective in treating wild-type and drug-resistant HIV-1 infections in clinical trials at relatively low doses ( approximately 25-75 mg/day). We have determined the structure of wild-type HIV-1 RT complexed with TMC278 at 1.8 A resolution, using an RT crystal form engineered by systematic RT mutagenesis. This high-resolution structure reveals that the cyanovinyl group of TMC278 is positioned in a hydrophobic tunnel connecting the NNRTI-binding pocket to the nucleic acid-binding cleft. The crystal structures of TMC278 in complexes with the double mutant K103N/Y181C (2.1 A) and L100I/K103N HIV-1 RTs (2.9 A) demonstrated that TMC278 adapts to bind mutant RTs. In the K103N/Y181C RT/TMC278 structure, loss of the aromatic ring interaction caused by the Y181C mutation is counterbalanced by interactions between the cyanovinyl group of TMC278 and the aromatic side chain of Y183, which is facilitated by an approximately 1.5 A shift of the conserved Y(183)MDD motif. In the L100I/K103N RT/TMC278 structure, the binding mode of TMC278 is significantly altered so that the drug conforms to changes in the binding pocket primarily caused by the L100I mutation. The flexible binding pocket acts as a molecular "shrink wrap" that makes a shape complementary to the optimized TMC278 in wild-type and drug-resistant forms of HIV-1 RT. The crystal structures provide a better understanding of how the flexibility of an inhibitor can compensate for drug-resistance mutations.


Assuntos
Fármacos Anti-HIV/química , Farmacorresistência Viral/genética , Inibidores Enzimáticos/química , Transcriptase Reversa do HIV/química , Nitrilas/química , Pirimidinas/química , Inibidores da Transcriptase Reversa/química , Motivos de Aminoácidos/genética , Sequência de Aminoácidos , Cristalografia por Raios X , Desenho de Fármacos , Transcriptase Reversa do HIV/genética , Humanos , Dados de Sequência Molecular , Mutação , Conformação Proteica , Engenharia de Proteínas , Rilpivirina
2.
J Biol Chem ; 284(50): 35092-100, 2009 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-19812032

RESUMO

K65R is a primary reverse transcriptase (RT) mutation selected in human immunodeficiency virus type 1-infected patients taking antiretroviral regimens containing tenofovir disoproxil fumarate or other nucleoside analog RT drugs. We determined the crystal structures of K65R mutant RT cross-linked to double-stranded DNA and in complexes with tenofovir diphosphate (TFV-DP) or dATP. The crystals permit substitution of TFV-DP with dATP at the dNTP-binding site. The guanidinium planes of the arginines K65R and Arg(72) were stacked to form a molecular platform that restricts the conformational adaptability of both of the residues, which explains the negative effects of the K65R mutation on nucleotide incorporation and on excision. Furthermore, the guanidinium planes of K65R and Arg(72) were stacked in two different rotameric conformations in TFV-DP- and dATP-bound structures that may help explain how K65R RT discriminates the drug from substrates. These K65R-mediated effects on RT structure and function help us to visualize the complex interaction with other key nucleotide RT drug resistance mutations, such as M184V, L74V, and thymidine analog resistance mutations.


Assuntos
Adenina/análogos & derivados , Farmacorresistência Viral/fisiologia , Transcriptase Reversa do HIV , Mutação , Organofosfonatos/farmacologia , Inibidores da Transcriptase Reversa/farmacologia , Adenina/química , Adenina/farmacologia , Arginina/genética , Arginina/metabolismo , Cristalização , Cristalografia por Raios X , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/efeitos dos fármacos , Transcriptase Reversa do HIV/fisiologia , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Molecular , Organofosfonatos/química , Conformação Proteica , Inibidores da Transcriptase Reversa/química , Tenofovir
3.
Nucleic Acids Res ; 36(15): 5083-92, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18676450

RESUMO

HIV-1 reverse transcriptase (RT) is a primary target for anti-AIDS drugs. Structures of HIV-1 RT, usually determined at approximately 2.5-3.0 A resolution, are important for understanding enzyme function and mechanisms of drug resistance in addition to being helpful in the design of RT inhibitors. Despite hundreds of attempts, it was not possible to obtain the structure of a complex of HIV-1 RT with TMC278, a nonnucleoside RT inhibitor (NNRTI) in advanced clinical trials. A systematic and iterative protein crystal engineering approach was developed to optimize RT for obtaining crystals in complexes with TMC278 and other NNRTIs that diffract X-rays to 1.8 A resolution. Another form of engineered RT was optimized to produce a high-resolution apo-RT crystal form, reported here at 1.85 A resolution, with a distinct RT conformation. Engineered RTs were mutagenized using a new, flexible and cost effective method called methylated overlap-extension ligation independent cloning. Our analysis suggests that reducing the solvent content, increasing lattice contacts, and stabilizing the internal low-energy conformations of RT are critical for the growth of crystals that diffract to high resolution. The new RTs enable rapid crystallization and yield high-resolution structures that are useful in designing/developing new anti-AIDS drugs.


Assuntos
Cristalografia por Raios X , Transcriptase Reversa do HIV/química , Nitrilas/química , Engenharia de Proteínas/métodos , Pirimidinas/química , Inibidores da Transcriptase Reversa/química , Clonagem Molecular , Desenho de Fármacos , Transcriptase Reversa do HIV/genética , Transcriptase Reversa do HIV/metabolismo , Modelos Moleculares , Mutagênese , Rilpivirina
4.
Nat Struct Mol Biol ; 11(5): 469-74, 2004 May.
Artigo em Inglês | MEDLINE | ID: mdl-15107837

RESUMO

Tenofovir, also known as PMPA, R-9-(2-(phosphonomethoxypropyl)adenine, is a nucleotide reverse transcriptase (RT) inhibitor. We have determined the crystal structures of two related complexes of HIV-1 RT with template primer and tenofovir: (i) a ternary complex at a resolution of 3.0 A of RT crosslinked to a dideoxy-terminated DNA with tenofovir-diphosphate bound as the incoming substrate; and (ii) a RT-DNA complex at a resolution of 3.1 A with tenofovir at the 3' primer terminus. The tenofovir nucleotide in the tenofovir-terminated structure seems to adopt multiple conformations. Some nucleoside reverse transcriptase inhibitors, including 3TC and AZT, have elements ('handles') that project beyond the corresponding elements on normal dNTPs (the 'substrate envelope'). HIV-1 RT resistance mechanisms to AZT and 3TC take advantage of these handles; tenofovir's structure lacks handles that could protrude through the substrate envelope to cause resistance.


Assuntos
Adenina/análogos & derivados , Adenina/química , DNA Viral/química , Transcriptase Reversa do HIV/química , Organofosfonatos , Compostos Organofosforados/química , Inibidores da Transcriptase Reversa/química , Sequência de Bases , Primers do DNA , Modelos Moleculares , Tenofovir
5.
J Mol Biol ; 365(1): 77-89, 2007 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-17056061

RESUMO

Lys103Asn and Tyr181Cys are the two mutations frequently observed in patients exposed to various non-nucleoside reverse transcriptase inhibitor drugs (NNRTIs). Human immunodeficiency virus (HIV) strains containing both reverse transcriptase (RT) mutations are resistant to all of the approved NNRTI drugs. We have determined crystal structures of Lys103Asn/Tyr181Cys mutant HIV-1 RT with and without a bound non-nucleoside inhibitor (HBY 097, (S)-4-isopropoxycarbonyl-6-methoxy-3-(methylthio-methyl)-3,4-dihydroquinoxalin-2(1H)-thione) at 3.0 A and 2.5 A resolution, respectively. The structure of the double mutant RT/HBY 097 complex shows a rearrangement of the isopropoxycarbonyl group of HBY 097 compared to its binding with wild-type RT. HBY 097 makes a hydrogen bond with the thiol group of Cys181 that helps the drug retain potency against the Tyr181Cys mutation. The structure of the unliganded double mutant HIV-1 RT showed that Lys103Asn mutation facilitates coordination of a sodium ion with Lys101 O, Asn103 N and O(delta1), Tyr188 O(eta), and two water molecules. The formation of the binding pocket requires the removal of the sodium ion. Although the RT alone and the RT/HBY 097 complex were crystallized in the presence of ATP, only the RT has an ATP coordinated with two Mn(2+) at the polymerase active site. The metal coordination mimics a reaction intermediate state in which complete octahedral coordination was observed for both metal ions. Asp186 coordinates at an axial position whereas the carboxylates of Asp110 and Asp185 are in the planes of coordination of both metal ions. The structures provide evidence that NNRTIs restrict the flexibility of the YMDD loop and prevent the catalytic aspartate residues from adopting their metal-binding conformations.


Assuntos
Trifosfato de Adenosina/metabolismo , Fármacos Anti-HIV/metabolismo , Transcriptase Reversa do HIV/química , Transcriptase Reversa do HIV/metabolismo , HIV-1/efeitos dos fármacos , HIV-1/enzimologia , Substituição de Aminoácidos , Fármacos Anti-HIV/química , Fármacos Anti-HIV/farmacologia , Sítios de Ligação , Cristalografia por Raios X , DNA/metabolismo , Farmacorresistência Viral , Transcriptase Reversa do HIV/antagonistas & inibidores , Humanos , Manganês/metabolismo , Modelos Moleculares , Conformação Molecular , Mutação , Conformação Proteica , Quinoxalinas/química , Quinoxalinas/metabolismo , Quinoxalinas/farmacologia , Inibidores da Transcriptase Reversa/química , Inibidores da Transcriptase Reversa/metabolismo , Inibidores da Transcriptase Reversa/farmacologia
6.
Structure ; 12(4): 657-67, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15062088

RESUMO

Arginine deiminase (ADI), an enzyme that hydrolyzes arginine to generate energy in many parasitic microorganisms, has potent anticancer activities and can halt growth of solid tumors. We determined the crystal structure of ADI from Mycoplasma arginini in two different forms (1.6 and 2.0 A resolution) using multiple isomorphous replacement. ADI shares common structural features with the arginine-catabolizing enzymes Arg:Gly amidinotransferase and dimethylarginine dimethyl-aminohydrolase; ADI contains an additional domain of five helices. The scissile C-N bonds of the substrates and the catalytic triads (Cys398-His269-Glu213 of ADI) for the three enzymes superimpose on each other. The ADI structure from form I crystals corresponds to a tetrahedral intermediate with four heteroatoms (1S, 2N, 1O) covalently bonded to the reaction-center carbon. The structure from form II crystals represents an amidino-enzyme complex; the reaction-center carbon is covalently bonded to Cys398 sulfur and two nitrogens, and the reacting water molecule is only 2.54 A away.


Assuntos
Hidrolases/química , Sequência de Aminoácidos , Arginina/metabolismo , Citrulina/metabolismo , Cristalografia por Raios X , Hidrolases/isolamento & purificação , Hidrolases/metabolismo , Dados de Sequência Molecular , Mycoplasma/enzimologia , Estrutura Terciária de Proteína
7.
J Med Chem ; 48(6): 1974-83, 2005 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-15771441

RESUMO

We have examined selected physicochemical properties of compounds from the diaryltriazine/diarylpyrimidine (DATA/DAPY) classes of non-nucleoside reverse transcriptase inhibitors (NNRTIs) and explored possible correlations with their bioavailability. In simple aqueous solutions designed to mimic the gastrointestinal (GI) environment of a fasting individual, all NNRTIs demonstrated formation of aggregates as detected by dynamic light scattering and electron microscopy. Under various conditions mimicking physiological transitions in the GI environment, aggregate size distributions were shown to depend on compound concentration and pH. NNRTIs with good absorption were capable of forming aggregates with hydrodynamic radii of /=250 nm at concentrations above 0.01 mM, probably representing precipitate. We propose a model in which the uptake rate into systemic circulation depends on having hydrophobic drug aggregates of appropriate size available for absorption at different locations within the GI tract.


Assuntos
Disponibilidade Biológica , Modelos Biológicos , Pirimidinas/química , Inibidores da Transcriptase Reversa/química , Triazinas/química , Absorção , Administração Oral , Animais , Fenômenos Químicos , Físico-Química , Trato Gastrointestinal , Meia-Vida , Humanos , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Luz , Microscopia Eletrônica de Transmissão , Ratos , Espalhamento de Radiação , Soluções
8.
J Med Chem ; 48(24): 7582-91, 2005 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-16302798

RESUMO

In the treatment of AIDS, the efficacy of all drugs, including non-nucleoside inhibitors (NNRTIs) of HIV-1 reverse transcriptase (RT), has been limited by the rapid appearance of drug-resistant viruses. Lys103Asn, Tyr181Cys, and Tyr188Leu are some of the most common RT mutations that cause resistance to NNRTIs in the clinic. We report X-ray crystal structures for RT complexed with three different pyridinone derivatives, R157208, R165481, and R221239, at 2.95, 2.9, and 2.43 A resolution, respectively. All three ligands exhibit nanomolar or subnanomolar inhibitory activity against wild-type RT, but varying activities against drug-resistant mutants. R165481 and R221239 differ from most NNRTIs in that binding does not involve significant contacts with Tyr181. These compounds strongly inhibit wild-type HIV-1 RT and drug-resistant variants, including Tyr181Cys and Lys103Asn RT. These properties result in part from an iodine atom on the pyridinone ring of both inhibitors that interacts with the main-chain carbonyl oxygen of Tyr188. An acrylonitrile substituent on R165481 substantially improves the activity of the compound against wild-type RT (and several mutants) and provides a way to generate novel inhibitors that could interact with conserved elements of HIV-1 RT at the polymerase catalytic site. In R221239, there is a flexible linker to a furan ring that permits interactions with Val106, Phe227, and Pro236. These contacts appear to enhance the inhibitory activity of R221239 against the HIV-1 strains that carry the Val106Ala, Tyr188Leu, and Phe227Cys mutations.


Assuntos
Farmacorresistência Viral , Transcriptase Reversa do HIV/química , HIV-1/enzimologia , Piridonas/química , Inibidores da Transcriptase Reversa/química , Cristalografia por Raios X , HIV-1/genética , Modelos Moleculares , Estrutura Molecular , Mutação
9.
J Med Chem ; 47(10): 2550-60, 2004 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-15115397

RESUMO

Anti-AIDS drug candidate and non-nucleoside reverse transcriptase inhibitor (NNRTI) TMC125-R165335 (etravirine) caused an initial drop in viral load similar to that observed with a five-drug combination in naïve patients and retains potency in patients infected with NNRTI-resistant HIV-1 variants. TMC125-R165335 and related anti-AIDS drug candidates can bind the enzyme RT in multiple conformations and thereby escape the effects of drug-resistance mutations. Structural studies showed that this inhibitor and other diarylpyrimidine (DAPY) analogues can adapt to changes in the NNRTI-binding pocket in several ways: (1). DAPY analogues can bind in at least two conformationally distinct modes; (2). within a given binding mode, torsional flexibility ("wiggling") of DAPY analogues permits access to numerous conformational variants; and (3). the compact design of the DAPY analogues permits significant repositioning and reorientation (translation and rotation) within the pocket ("jiggling"). Such adaptations appear to be critical for potency against wild-type and a wide range of drug-resistant mutant HIV-1 RTs. Exploitation of favorable components of inhibitor conformational flexibility (such as torsional flexibility about strategically located chemical bonds) can be a powerful drug design concept, especially for designing drugs that will be effective against rapidly mutating targets.


Assuntos
Fármacos Anti-HIV/química , Farmacorresistência Viral , Transcriptase Reversa do HIV/química , Piridazinas/química , Inibidores da Transcriptase Reversa/química , Cristalografia por Raios X , Transcriptase Reversa do HIV/genética , Modelos Moleculares , Mutação , Nitrilas , Conformação Proteica , Pirimidinas/química
10.
J Med Chem ; 54(8): 2727-37, 2011 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-21446702

RESUMO

tert-Butyldimethylsilyl-spiroaminooxathioledioxide (TSAO) compounds have an embedded thymidine-analogue backbone; however, TSAO compounds invoke non-nucleoside RT inhibitor (NNRTI) resistance mutations. Our crystal structure of RT:7 (TSAO-T) complex shows that 7 binds inside the NNRTI-binding pocket, assuming a "dragon" shape, and interacts extensively with almost all the pocket residues. The structure also explains the structure-activity relationships and resistance data for TSAO compounds. The binding of 7 causes hyper-expansion of the pocket and significant rearrangement of RT subdomains. This nonoptimal complex formation is apparently responsible (1) for the lower stability of a RT (p66/p51) dimer and (2) for the lower potency of 7 despite of its extensive interactions with RT. However, the HIV-1 RT:7 structure reveals novel design features such as (1) interactions with the conserved Tyr183 from the YMDD-motif and (2) a possible way for an NNRTI to reach the polymerase active site that may be exploited in designing new NNRTIs.


Assuntos
Transcriptase Reversa do HIV/antagonistas & inibidores , Inibidores da Transcriptase Reversa/farmacologia , Compostos de Espiro/química , Timidina/análogos & derivados , Cristalografia por Raios X , Elasticidade , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Molecular , Relação Estrutura-Atividade , Timidina/química , Uridina/análogos & derivados
11.
Nat Struct Mol Biol ; 17(10): 1202-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20852643

RESUMO

Human immunodeficiency virus (HIV-1) develops resistance to 3'-azido-2',3'-deoxythymidine (AZT, zidovudine) by acquiring mutations in reverse transcriptase that enhance the ATP-mediated excision of AZT monophosphate from the 3' end of the primer. The excision reaction occurs at the dNTP-binding site, uses ATP as a pyrophosphate donor, unblocks the primer terminus and allows reverse transcriptase to continue viral DNA synthesis. The excision product is AZT adenosine dinucleoside tetraphosphate (AZTppppA). We determined five crystal structures: wild-type reverse transcriptase-double-stranded DNA (RT-dsDNA)-AZTppppA; AZT-resistant (AZTr; M41L D67N K70R T215Y K219Q) RT-dsDNA-AZTppppA; AZTr RT-dsDNA terminated with AZT at dNTP- and primer-binding sites; and AZTr apo reverse transcriptase. The AMP part of AZTppppA bound differently to wild-type and AZTr reverse transcriptases, whereas the AZT triphosphate part bound the two enzymes similarly. Thus, the resistance mutations create a high-affinity ATP-binding site. The structure of the site provides an opportunity to design inhibitors of AZT-monophosphate excision.


Assuntos
Farmacorresistência Viral/fisiologia , Transcriptase Reversa do HIV/química , HIV-1/efeitos dos fármacos , Inibidores da Transcriptase Reversa/farmacologia , Zidovudina/farmacologia , Trifosfato de Adenosina/metabolismo , Substituição de Aminoácidos , Sítios de Ligação/efeitos dos fármacos , Cristalografia por Raios X , DNA Viral/biossíntese , Desoxirribonucleotídeos/metabolismo , Didesoxinucleotídeos/metabolismo , Desenho de Fármacos , Farmacorresistência Viral/genética , Genes rev , Transcriptase Reversa do HIV/genética , HIV-1/enzimologia , HIV-1/genética , Modelos Moleculares , Mutação de Sentido Incorreto , Mutação Puntual , Conformação Proteica , Relação Estrutura-Atividade , Nucleotídeos de Timina/metabolismo , Zidovudina/análogos & derivados , Zidovudina/metabolismo
12.
Structure ; 17(12): 1625-1635, 2009 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-20004166

RESUMO

Novel inhibitors are needed to counteract the rapid emergence of drug-resistant HIV variants. HIV-1 reverse transcriptase (RT) has both DNA polymerase and RNase H (RNH) enzymatic activities, but approved drugs that inhibit RT target the polymerase. Inhibitors that act against new targets, such as RNH, should be effective against all of the current drug-resistant variants. Here, we present 2.80 A and 2.04 A resolution crystal structures of an RNH inhibitor, beta-thujaplicinol, bound at the RNH active site of both HIV-1 RT and an isolated RNH domain. beta-thujaplicinol chelates two divalent metal ions at the RNH active site. We provide biochemical evidence that beta-thujaplicinol is a slow-binding RNH inhibitor with noncompetitive kinetics and suggest that it forms a tropylium ion that interacts favorably with RT and the RNA:DNA substrate.


Assuntos
Transcriptase Reversa do HIV/química , Inibidores da Transcriptase Reversa/química , Ribonucleases/metabolismo , Tropolona/análogos & derivados , Domínio Catalítico , Cristalografia por Raios X , Transcriptase Reversa do HIV/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Inibidores da Transcriptase Reversa/metabolismo , Tropolona/química , Tropolona/metabolismo
13.
ACS Chem Biol ; 1(11): 702-12, 2006 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-17184135

RESUMO

The rapid emergence of drug-resistant variants of human immunodeficiency virus, type 1 (HIV-1), has limited the efficacy of anti-acquired immune deficiency syndrome (AIDS) treatments, and new lead compounds that target novel binding sites are needed. We have determined the 3.15 A resolution crystal structure of HIV-1 reverse transcriptase (RT) complexed with dihydroxy benzoyl naphthyl hydrazone (DHBNH), an HIV-1 RT RNase H (RNH) inhibitor (RNHI). DHBNH is effective against a variety of drug-resistant HIV-1 RT mutants. While DHBNH has little effect on most aspects of RT-catalyzed DNA synthesis, at relatively high concentrations it does inhibit the initiation of RNA-primed DNA synthesis. Although primarily an RNHI, DHBNH binds >50 A away from the RNH active site, at a novel site near both the polymerase active site and the non-nucleoside RT inhibitor (NNRTI) binding pocket. When DHBNH binds, both Tyr181 and Tyr188 remain in the conformations seen in unliganded HIV-1 RT. DHBNH interacts with conserved residues (Asp186, Trp229) and has substantial interactions with the backbones of several less well-conserved residues. On the basis of this structure, we designed substituted DHBNH derivatives that interact with the NNRTI-binding pocket. These compounds inhibit both the polymerase and RNH activities of RT.


Assuntos
Transcriptase Reversa do HIV/antagonistas & inibidores , Transcriptase Reversa do HIV/química , Inibidores da Transcriptase Reversa/química , Ribonuclease H/antagonistas & inibidores , Linhagem Celular Tumoral , Transcriptase Reversa do HIV/metabolismo , Humanos , Hidrazonas/química , Hidrazonas/farmacologia , Ligação Proteica/efeitos dos fármacos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína/efeitos dos fármacos , Estrutura Secundária de Proteína/fisiologia , Inibidores da Transcriptase Reversa/farmacologia , Ribonuclease H/metabolismo , Relação Estrutura-Atividade
14.
Cell ; 122(4): 541-52, 2005 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-16122422

RESUMO

We define the target, mechanism, and structural basis of inhibition of bacterial RNA polymerase (RNAP) by the tetramic acid antibiotic streptolydigin (Stl). Stl binds to a site adjacent to but not overlapping the RNAP active center and stabilizes an RNAP-active-center conformational state with a straight-bridge helix. The results provide direct support for the proposals that alternative straight-bridge-helix and bent-bridge-helix RNAP-active-center conformations exist and that cycling between straight-bridge-helix and bent-bridge-helix RNAP-active-center conformations is required for RNAP function. The results set bounds on models for RNAP function and suggest strategies for design of novel antibacterial agents.


Assuntos
Aminoglicosídeos/farmacologia , Bactérias/enzimologia , Bactérias/genética , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/metabolismo , RNA Mensageiro/biossíntese , Aminoglicosídeos/química , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , RNA Polimerases Dirigidas por DNA/química , Retroalimentação Fisiológica/fisiologia , Modelos Moleculares , Estrutura Molecular , Estrutura Secundária de Proteína/efeitos dos fármacos , Estrutura Secundária de Proteína/genética
15.
J Biol Chem ; 278(18): 16280-8, 2003 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-12554739

RESUMO

A disulfide cross-linking strategy was used to covalently trap as a stable complex (complex N) a short-lived, kinetic intermediate in DNA polymerization. This intermediate corresponds to the product of polymerization prior to translocation. We also prepared the trapped complex that corresponds to the product of polymerization after translocation (complex P). The cross-linking method that we used is a variation of a technique developed by the Verdine and Harrison laboratories. It involves disulfide interchange between an engineered sulfhydryl group of the protein (Q258C mutation) and a disulfide-containing tether attached at the N(2) amino group of a modified dG in either the template or the primer strand of the nucleic acid. We report here a highly efficient synthesis of the precursor, bis(3-aminopropyl)disulfide dihydrochloride, used to introduce this substituent into the oligonucleotide. Efficient cross-linking takes place when the base pair containing the substituent is positioned seven registers from the dNTP-binding site (N site) and the N site is occupied. Complex N, but not complex P, is a substrate for the ATP-based excision reaction that unblocks nucleoside reverse transcriptase inhibitor (NRTI)-terminated primers and causes resistance to several NRTIs, confirming predictions that the excision reaction takes place only when the 3'-end of the primer is bound at the N site. These techniques can be used for biochemical and structural studies of the mechanism of DNA polymerization, translocation, and excision-based resistance of RT to NRTIs. They may also be useful in studying other DNA or RNA polymerases or other enzymes.


Assuntos
DNA/metabolismo , Transcriptase Reversa do HIV/metabolismo , Trifosfato de Adenosina/metabolismo , Transporte Biológico , Cristalização , Transcriptase Reversa do HIV/química
16.
EMBO J ; 21(23): 6614-24, 2002 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-12456667

RESUMO

AZT (3'-azido-3'-deoxythymidine) resistance involves the enhanced excision of AZTMP from the end of the primer strand by HIV-1 reverse transcriptase. This reaction can occur when an AZTMP-terminated primer is bound at the nucleotide-binding site (pre-translocation complex N) but not at the 'priming' site (post-translocation complex P). We determined the crystal structures of N and P complexes at 3.0 and 3.1 A resolution. These structures provide insight into the structural basis of AZTMP excision and the mechanism of translocation. Docking of a dNTP in the P complex structure suggests steric crowding in forming a stable ternary complex that should increase the relative amount of the N complex, which is the substrate for excision. Structural differences between complexes N and P suggest that the conserved YMDD loop is involved in translocation, acting as a springboard that helps to propel the primer terminus from the N to the P site after dNMP incorporation.


Assuntos
DNA/metabolismo , HIV-1/metabolismo , DNA Polimerase Dirigida por RNA/metabolismo , Nucleotídeos de Timina/metabolismo , Zidovudina/análogos & derivados , Zidovudina/metabolismo , DNA/biossíntese , Didesoxinucleotídeos , Farmacorresistência Viral/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA