RESUMO
The Lyme disease pathogen Borrelia burgdorferi represents a novel organism in which to study metalloprotein biology in that this spirochete has uniquely evolved with no requirement for iron. Not only is iron low, but we show here that B. burgdorferi has the capacity to accumulate remarkably high levels of manganese. This high manganese is necessary to activate the SodA superoxide dismutase (SOD) essential for virulence. Using a metalloproteomic approach, we demonstrate that a bulk of B. burgdorferi SodA directly associates with manganese, and a smaller pool of inactive enzyme accumulates as apoprotein. Other metalloproteins may have similarly adapted to using manganese as co-factor, including the BB0366 aminopeptidase. Whereas B. burgdorferi SodA has evolved in a manganese-rich, iron-poor environment, the opposite is true for Mn-SODs of organisms such as Escherichia coli and bakers' yeast. These Mn-SODs still capture manganese in an iron-rich cell, and we tested whether the same is true for Borrelia SodA. When expressed in the iron-rich mitochondria of Saccharomyces cerevisiae, B. burgdorferi SodA was inactive. Activity was only possible when cells accumulated extremely high levels of manganese that exceeded cellular iron. Moreover, there was no evidence for iron inactivation of the SOD. B. burgdorferi SodA shows strong overall homology with other members of the Mn-SOD family, but computer-assisted modeling revealed some unusual features of the hydrogen bonding network near the enzyme's active site. The unique properties of B. burgdorferi SodA may represent adaptation to expression in the manganese-rich and iron-poor environment of the spirochete.
Assuntos
Proteínas de Bactérias/metabolismo , Borrelia burgdorferi/enzimologia , Manganês/fisiologia , Superóxido Dismutase/metabolismo , Sequência de Aminoácidos , Apoenzimas/isolamento & purificação , Apoenzimas/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Domínio Catalítico , Sequência Conservada , Ativação Enzimática , Ligação de Hidrogênio , Peróxido de Hidrogênio , Manganês/metabolismo , Mitocôndrias/enzimologia , Modelos Moleculares , Dados de Sequência Molecular , Transporte Proteico , Saccharomyces cerevisiae , Homologia de Sequência de Aminoácidos , Superóxido Dismutase/química , Superóxido Dismutase/isolamento & purificaçãoRESUMO
The landscape of human phosphorylation networks has not been systematically explored, representing vast, unchartered territories within cellular signaling networks. Although a large number of in vivo phosphorylated residues have been identified by mass spectrometry (MS)-based approaches, assigning the upstream kinases to these residues requires biochemical analysis of kinase-substrate relationships (KSRs). Here, we developed a new strategy, called CEASAR, based on functional protein microarrays and bioinformatics to experimentally identify substrates for 289 unique kinases, resulting in 3656 high-quality KSRs. We then generated consensus phosphorylation motifs for each of the kinases and integrated this information, along with information about in vivo phosphorylation sites determined by MS, to construct a high-resolution map of phosphorylation networks that connects 230 kinases to 2591 in vivo phosphorylation sites in 652 substrates. The value of this data set is demonstrated through the discovery of a new role for PKA downstream of Btk (Bruton's tyrosine kinase) during B-cell receptor signaling. Overall, these studies provide global insights into kinase-mediated signaling pathways and promise to advance our understanding of cellular signaling processes in humans.
Assuntos
Linfócitos B/enzimologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas Tirosina Quinases/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Transdução de Sinais/genética , Tirosina Quinase da Agamaglobulinemia , Algoritmos , Sequência de Aminoácidos , Linfócitos B/citologia , Teorema de Bayes , Proteínas Quinases Dependentes de AMP Cíclico/genética , Humanos , Dados de Sequência Molecular , Fosforilação , Análise Serial de Proteínas , Mapas de Interação de Proteínas , Proteínas Tirosina Quinases/genética , Receptores de Antígenos de Linfócitos B/genética , Tirosina/metabolismoRESUMO
Thiol oxidation is a probable outcome of cellular oxidative stress and is linked to degenerative disease progression. In addition, protein thiol redox reactions are increasingly identified as a mechanism to regulate protein structure and function. We assessed the effect of hypothiocyanous acid on the cytoskeletal protein tubulin. Total cysteine oxidation by hypothiocyanous and hypochlorous acids was monitored by labeling tubulin with 5-iodoacetamidofluorescein and by detecting higher molecular weight inter-chain tubulin disulfides by Western blot under nonreducing conditions. Hypothiocyanous acid induced nearly stoichiometric oxidation of tubulin cysteines (1.9 mol cysteine/mol oxidant) and no methionine oxidation was observed. Because disulfide reducing agents restored all the polymerization activity that was lost due to oxidant treatment, we conclude that cysteine oxidation of tubulin inhibits microtubule polymerization. Hypothiocyanous acid oxidation of tubulin cysteines was markedly decreased in the presence of 4% glycerol, a component of the tubulin purification buffer. Due to its instability and buffer- and pH-dependent reactivity, hypothiocyanous acid studies require careful consideration of reaction conditions.