Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Plant J ; 110(4): 932-945, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35218268

RESUMO

Flavonoids are a well-known class of specialized metabolites that play key roles in plant development, reproduction, and survival. Flavonoids are also of considerable interest from the perspective of human health, as both phytonutrients and pharmaceuticals. RNA sequencing analysis of an Arabidopsis null allele for chalcone synthase (CHS), which catalyzes the first step in flavonoid metabolism, has uncovered evidence that these compounds influence the expression of genes associated with the plant circadian clock. Analysis of promoter-luciferase constructs further showed that the transcriptional activity of CCA1 and TOC1, two key clock genes, is altered in CHS-deficient seedlings across the day/night cycle. Similar findings for a mutant line lacking flavonoid 3'-hydroxylase (F3'H) activity, and thus able to synthesize mono- but not dihydroxylated B-ring flavonoids, suggests that the latter are at least partially responsible; this was further supported by the ability of quercetin to enhance CCA1 promoter activity in wild-type and CHS-deficient seedlings. The effects of flavonoids on circadian function were also reflected in photosynthetic activity, with chlorophyll cycling abolished in CHS- and F3'H-deficient plants. Remarkably, the same phenotype was exhibited by plants with artificially high flavonoid levels, indicating that neither the antioxidant potential nor the light-screening properties of flavonoids contribute to optimal clock function, as has recently also been demonstrated in animal systems. Collectively, the current experiments point to a previously unknown connection between flavonoids and circadian cycling in plants and open the way to better understanding of the molecular basis of flavonoid action.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Relógios Circadianos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Relógios Circadianos/genética , Ritmo Circadiano/genética , Flavonoides/metabolismo , Regulação da Expressão Gênica de Plantas , Mutação , Plântula/metabolismo
2.
NPJ Vaccines ; 7(1): 155, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36456563

RESUMO

Malaria is a deadly disease responsible for between 550,000 and 627,000 deaths annually. There is a pressing need to develop vaccines focused on malaria elimination. The complex lifecycle of Plasmodium falciparum provides opportunities not only to target the infectious sporozoite stage, introduced by anopheline mosquitoes, but also the sexual stages, which are ingested by mosquitoes during blood feeding, leading to parasite transmission. It is widely recognized that a vaccine targeting multiple stages would induce efficacious transmission reducing immunity. Technological advancements offer new vaccine platforms, such as mRNA-LNPs, which can be used to develop highly effective malarial vaccines. We evaluated the immunogenicity of two leading P. falciparum vaccine candidates, Pfs25 and PfCSP, delivered as mRNA-LNP vaccines. Both vaccines induced extremely potent immune responses when administered alone or in combination, which were superior to Pfs25 and PfCSP DNA vaccine formulations. Purified IgGs from Pfs25 mRNA-LNPs immunized mice were highly potent in reducing malaria transmission to mosquitoes. Additionally, mice after three and four immunizations with PfCSP mRNA-LNP provided evidence for varying degrees of protection against sporozoite challenge. The comparison of immune responses and stage-specific functional activity induced by each mRNA-LNP vaccine, administered alone or in combination, also supports the development of an effective combination vaccine without any risk of immune interference for targeting malaria parasites at various life cycle stages. A combination of vaccines targeting both the infective stage and sexual/midgut stages is expected to interrupt malaria transmission, which is critical for achieving elimination goals.

3.
Vaccines (Basel) ; 10(7)2022 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-35891298

RESUMO

Plasmodium falciparum circumsporozoite protein (PfCSP) and Pfs25 are leading candidates for the development of pre-erythrocytic and transmission-blocking vaccines (TBV), respectively. Although considerable progress has been made in developing PfCSP- and Pfs25-based vaccines, neither have elicited complete protection or transmission blocking in clinical trials. The combination of antigens targeting various life stages is an alternative strategy to develop a more efficacious malaria vaccine. In this study, female and male mice were immunized with DNA plasmids encoding PfCSP and Pfs25, administered alone or in combination via intramuscular in vivo electroporation (EP). Antigen-specific antibodies were analyzed for antibody titers, avidity and isotype by ELISA. Immune protection against sporozoite challenge, using transgenic P. berghei expressing PfCSP and a GFP-luciferase fusion protein (PbPfCSP-GFP/Luc), was assessed by in vivo bioluminescence imaging and blood-stage parasite growth. Transmission reducing activity (TRA) was evaluated in standard membrane feeding assays (SMFA). High levels of PfCSP- and Pfs25-specific antibodies were induced in mice immunized with either DNA vaccine alone or in combination. No difference in antibody titer and avidity was observed for both PfCSP and Pfs25 between the single DNA and combined DNA immunization groups. When challenged by PbPfCSP-GFP/Luc sporozoites, mice immunized with PfCSP alone or combined with Pfs25 revealed significantly reduced liver-stage parasite loads as compared to mice immunized with Pfs25, used as a control. Furthermore, parasite liver loads were negatively correlated with PfCSP-specific antibody levels. When evaluating TRA, we found that immunization with Pfs25 alone or in combination with PfCSP elicited comparable significant transmission reduction. Our studies reveal that the combination of PfCSP and Pfs25 DNAs into a vaccine delivered by in vivo EP in mice does not compromise immunogenicity, infection protection and transmission reduction when compared to each DNA vaccine individually, and provide support for further evaluation of this DNA combination vaccine approach in larger animals and clinical trials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA