Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
1.
Mol Cell ; 81(6): 1128-1129, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33740472

RESUMO

Huang et al. (2021) identified a mechanism acting through the arginine methyltransferase PRMT6 that stabilizes the interaction of RCC1 with chromatin, promoting cell proliferation and tumorigenicity. Targeting this mechanism might enhance the treatment of tumors such as glioblastoma.


Assuntos
Glioblastoma , Proteínas Nucleares , Carcinogênese/genética , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Proliferação de Células , Cromossomos/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Metilação , Mitose , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Células-Tronco/metabolismo
2.
EMBO J ; 37(17)2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29987118

RESUMO

The initiation of apoptosis in response to the disruption of mitosis provides surveillance against chromosome instability. Here, we show that proteolytic destruction of the key regulator Mcl-1 during an extended mitosis requires the anaphase-promoting complex or cyclosome (APC/C) and is independent of another ubiquitin E3 ligase, SCFFbw7 Using live-cell imaging, we show that the loss of Mcl-1 during mitosis is dependent on a D box motif found in other APC/C substrates, while an isoleucine-arginine (IR) C-terminal tail regulates the manner in which Mcl-1 engages with the APC/C, converting Mcl-1 from a Cdc20-dependent and checkpoint-controlled substrate to one that is degraded independently of checkpoint strength. This mechanism ensures a relatively slow but steady rate of Mcl-1 degradation during mitosis and avoids its catastrophic destruction when the mitotic checkpoint is satisfied, providing an apoptotic timer that can distinguish a prolonged mitotic delay from normal mitosis. Importantly, we also show that inhibition of Cdc20 promotes mitotic cell death more effectively than loss of APC/C activity through differential effects on Mcl-1 degradation, providing an improved strategy to kill cancer cells.


Assuntos
Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Pontos de Checagem do Ciclo Celular , Mitose , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Multimerização Proteica , Proteólise , Ciclossomo-Complexo Promotor de Anáfase/genética , Apoptose/genética , Proteínas Cdc20/genética , Proteínas Cdc20/metabolismo , Proteína 7 com Repetições F-Box-WD/genética , Proteína 7 com Repetições F-Box-WD/metabolismo , Células HeLa , Humanos , Proteína de Sequência 1 de Leucemia de Células Mieloides/genética
3.
J Cell Sci ; 132(18)2019 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-31434716

RESUMO

Importin-α serves as an adaptor linking importin-ß to proteins carrying a nuclear localization sequence (NLS). During interphase, this interaction enables nuclear protein import, while in mitosis it regulates spindle assembly factors (SAFs) and controls microtubule nucleation, stabilization and spindle function. Here, we show that human importin-α1 is regulated during the cell cycle and is phosphorylated at two sites (threonine 9 and serine 62) during mitosis by the major mitotic protein kinase CDK1-cyclin B. Mutational analysis indicates that the mitotic phosphorylation of importin-α1 inhibits its binding to importin-ß and promotes the release of TPX2 and KIFC1, which are then targeted like importin-ß to the spindle. Loss of importin-α1 or expression of a non-phosphorylated mutant of importin-α1 results in the formation of shortened spindles with reduced microtubule density and induces a prolonged metaphase, whereas phosphorylation-mimicking mutants are functional in mitosis. We propose that phosphorylation of importin-α1 is a general mechanism for the spatial and temporal control of mitotic spindle assembly by CDK1-cyclin B1 that acts through the release of SAFs such as TPX2 and KIFC1 from inhibitory complexes that restrict spindle assembly.


Assuntos
Proteína Quinase CDC2/metabolismo , Ciclina B1/metabolismo , alfa Carioferinas/metabolismo , Proteínas de Ciclo Celular , Eletroforese em Gel de Poliacrilamida , Células HeLa , Humanos , Imunoprecipitação , Microtúbulos/metabolismo , Mitose/genética , Mitose/fisiologia , Fosforilação , Fuso Acromático/genética , Fuso Acromático/metabolismo , beta Carioferinas/genética , beta Carioferinas/metabolismo
4.
Nat Rev Mol Cell Biol ; 9(6): 464-77, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18478030

RESUMO

The small nuclear GTPase Ran controls the directionality of macromolecular transport between the nucleus and the cytoplasm. Ran also has important roles during mitosis, when the nucleus is dramatically reorganized to allow chromosome segregation. Ran directs the assembly of the mitotic spindle, nuclear-envelope dynamics and the timing of cell-cycle transitions. The mechanisms that underlie these functions provide insights into the spatial and temporal coordination of the changes that occur in intracellular organization during the cell-division cycle.


Assuntos
Mitose/fisiologia , Proteína ran de Ligação ao GTP/fisiologia , Animais , Humanos , Mitose/genética , Mutação , Transporte Proteico/genética , Transporte Proteico/fisiologia , Proteína ran de Ligação ao GTP/genética , Proteína ran de Ligação ao GTP/metabolismo
5.
J Cell Sci ; 130(2): 502-511, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27927753

RESUMO

Regulation of cell death is crucial for the response of cancer cells to drug treatments that cause arrest in mitosis, and is likely to be important for protection against chromosome instability in normal cells. Prolonged mitotic arrest can result in cell death by activation of caspases and the induction of apoptosis. Here, we show that X-linked inhibitor of apoptosis (XIAP) plays a key role in the control of mitotic cell death. Ablation of XIAP expression sensitises cells to prolonged mitotic arrest caused by a microtubule poison. XIAP is stable during mitotic arrest, but its function is controlled through phosphorylation by the mitotic kinase CDK1-cyclin-B1 at S40. Mutation of S40 to a phosphomimetic residue (S40D) inhibits binding to activated effector caspases and abolishes the anti-apoptotic function of XIAP, whereas a non-phosphorylatable mutant (S40A) blocks apoptosis. By performing live-cell imaging, we show that phosphorylation of XIAP reduces the threshold for the onset of cell death in mitosis. This work illustrates that mitotic cell death is a form of apoptosis linked to the progression of mitosis through control by CDK1-cyclin-B1.


Assuntos
Apoptose , Proteína Quinase CDC2/metabolismo , Ciclina B1/metabolismo , Mitose , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Ácido Aspártico/genética , Caspases/metabolismo , Pontos de Checagem do Ciclo Celular , Citoproteção , Células HeLa , Humanos , Modelos Biológicos , Mutação/genética , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica
6.
J Cell Sci ; 126(Pt 15): 3417-28, 2013 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-23729730

RESUMO

Mitotic spindle assembly in animal cells is orchestrated by a chromosome-dependent pathway that directs microtubule stabilization. RanGTP generated at chromosomes releases spindle assembly factors from inhibitory complexes with importins, the nuclear transport factors that facilitate protein import into the nucleus during interphase. In addition, the nuclear export factor Crm1 has been proposed to act as a mitotic effector of RanGTP through the localized assembly of protein complexes on the mitotic spindle, notably at centrosomes and kinetochores. It has been unclear, however, how the functions of nuclear transport factors are controlled during mitosis. Here, we report that human Crm1 is phosphorylated at serine 391 in mitosis by CDK1-cyclin-B (i.e. the CDK1 and cyclin B complex). Expression of Crm1 with serine 391 mutated to either non-phosphorylated or phosphorylation-mimicking residues indicates that phosphorylation directs the localization of Crm1 to the mitotic spindle and facilitates spindle assembly, microtubule stabilization and chromosome alignment. We find that phosphorylation of Crm1 at serine 391 enhances its RanGTP-dependent interaction with RanGAP1-RanBP2 and promotes their recruitment to the mitotic spindle. These results show that phosphorylation of Crm1 controls its molecular interactions, localization and function during mitosis, uncovering a new mechanism for the control of mitotic spindle assembly by CDK1-cyclin-B. We propose that nuclear transport factors are controlled during mitosis through the selection of specific molecular interactions by protein phosphorylation.


Assuntos
Proteína Quinase CDC2/metabolismo , Ciclina B/metabolismo , Carioferinas/metabolismo , Proteínas Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Fuso Acromático/metabolismo , Sequência de Aminoácidos , Células HeLa , Humanos , Cinetocoros/metabolismo , Mitose/fisiologia , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Proteína Exportina 1
7.
EMBO J ; 29(14): 2407-20, 2010 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-20526282

RESUMO

The balance between cell cycle progression and apoptosis is important for both surveillance against genomic defects and responses to drugs that arrest the cell cycle. In this report, we show that the level of the human anti-apoptotic protein Mcl-1 is regulated during the cell cycle and peaks at mitosis. Mcl-1 is phosphorylated at two sites in mitosis, Ser64 and Thr92. Phosphorylation of Thr92 by cyclin-dependent kinase 1 (CDK1)-cyclin B1 initiates degradation of Mcl-1 in cells arrested in mitosis by microtubule poisons. Mcl-1 destruction during mitotic arrest requires proteasome activity and is dependent on Cdc20/Fizzy, which mediates recognition of mitotic substrates by the anaphase-promoting complex/cyclosome (APC/C) E3 ubiquitin ligase. Stabilisation of Mcl-1 during mitotic arrest by mutation of either Thr92 or a D-box destruction motif inhibits the induction of apoptosis by microtubule poisons. Thus, phosphorylation of Mcl-1 by CDK1-cyclin B1 and its APC/C(Cdc20)-mediated destruction initiates apoptosis if a cell fails to resolve mitosis. Regulation of apoptosis, therefore, is linked intrinsically to progression through mitosis and is governed by a temporal mechanism that distinguishes between normal mitosis and prolonged mitotic arrest.


Assuntos
Proteína Quinase CDC2/metabolismo , Proteínas de Ciclo Celular/metabolismo , Ciclina B1/metabolismo , Mitose/fisiologia , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Sequência de Aminoácidos , Animais , Subunidade Apc3 do Ciclossomo-Complexo Promotor de Anáfase , Apoptose/fisiologia , Proteína Quinase CDC2/genética , Caspase 9/metabolismo , Proteínas Cdc20 , Proteínas de Ciclo Celular/genética , Linhagem Celular , Ciclina B1/genética , Humanos , Dados de Sequência Molecular , Proteína de Sequência 1 de Leucemia de Células Mieloides , Fosfopeptídeos/genética , Fosfopeptídeos/metabolismo , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Interferência de RNA , Serina/metabolismo , Treonina/metabolismo
8.
J Cell Sci ; 123(Pt 21): 3645-51, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20923838

RESUMO

Transforming acidic coiled-coil-containing protein 3 (TACC3) has been implicated in mitotic spindle assembly, although the mechanisms involved are largely unknown. Here we identify that clathrin heavy chain (CHC) binds specifically to phosphorylated TACC3 and recruits it to spindle poles for proper spindle assembly and chromosome alignment. Phosphorylation of Xenopus TACC3 at serine 620 (S620) and S626, but not S33, is required for its binding with CHC. Knockdown of CHC by RNA interference (RNAi) abolishes the targeting of TACC3 to spindle poles and results in abnormal spindle assembly and chromosome misalignment, similar to the defects caused by TACC3 knockdown. Furthermore, the binding of CHC with phosphorylated TACC3 is inhibited by importin ß and this inhibition is reversed by the presence of the GTP-binding nuclear protein Ran in the GTP-bound state. Together, these results indicate that the recruitment of phosphorylated TACC3 to spindle poles by CHC ensures proper spindle assembly and chromosome alignment, and is regulated by Ran.


Assuntos
Cadeias Pesadas de Clatrina/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Fuso Acromático/metabolismo , beta Carioferinas/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Animais , Aurora Quinases , Cromossomos/metabolismo , Cromossomos/ultraestrutura , Células HeLa , Humanos , Proteínas Associadas aos Microtúbulos/genética , Fosforilação , Ligação Proteica/genética , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico/genética , RNA Interferente Pequeno/genética , Xenopus laevis
9.
J Cell Sci ; 123(Pt 5): 736-46, 2010 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-20144988

RESUMO

Mutations in the tumour suppressor Adenomatous polyposis coli (Apc) initiate most sporadic colorectal cancers. Apc is implicated in regulating microtubule (MT) dynamics in interphase and mitosis. However, little is known about the underlying mechanism or regulation of this Apc function. We identified importin-beta as a binding partner of Apc that regulates its effect on MTs. Apc binds importin-beta in vitro and in Xenopus egg extracts, and RanGTP inhibits this interaction. The armadillo-like repeat domain of importin-beta binds to the middle of Apc, where it can compete with beta-catenin. In addition, two independent sites in the C terminus of Apc bind the N-terminal region of importin-beta. Binding to importin-beta reduces the ability of Apc to assemble and bundle MTs in vitro and to promote assembly of microtubule asters in Xenopus egg extracts, but does not affect the binding of Apc to MTs or to EB1. Depletion of Apc decreases the formation of cold-stable spindles in Xenopus egg extracts. Importantly, the ability of purified Apc to rescue this phenotype was reduced when it was constitutively bound to importin-beta. Thus, importin-beta binds to Apc and negatively regulates the MT-assembly and spindle-promoting activity of Apc in a Ran-regulatable manner.


Assuntos
Proteína da Polipose Adenomatosa do Colo/metabolismo , Microtúbulos/metabolismo , Proteínas de Xenopus/metabolismo , beta Carioferinas/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Proteína da Polipose Adenomatosa do Colo/genética , Animais , Sítios de Ligação/genética , Sítios de Ligação/fisiologia , Imunoprecipitação , Proteínas Associadas aos Microtúbulos/metabolismo , Ligação Proteica/genética , Ligação Proteica/fisiologia , Xenopus , Proteínas de Xenopus/genética , beta Catenina/metabolismo
10.
Nat Cell Biol ; 5(7): 647-54, 2003 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12792650

RESUMO

Many pro-apoptotic signals activate caspase-9, an initiator protease that activates caspase-3 and downstream caspases to initiate cellular destruction. However, survival signals can impinge on this pathway and suppress apoptosis. Activation of the Ras-Raf-MEK-ERK mitogen-activated protein kinase (MAPK) pathway is associated with protection of cells from apoptosis and inhibition of caspase-3 activation, although the targets are unknown. Here, we show that the ERK MAPK pathway inhibits caspase-9 activity by direct phosphorylation. In mammalian cell extracts, cytochrome c-induced activation of caspases-9 and -3 requires okadaic-acid-sensitive protein phosphatase activity. The opposing protein kinase activity is overcome by treatment with the broad-specificity kinase inhibitor staurosporine or with inhibitors of MEK1/2. Caspase-9 is phosphorylated at Thr 125, a conserved MAPK consensus site targeted by ERK2 in vitro, in a MEK-dependent manner in cells stimulated with epidermal growth factor (EGF) or 12-O-tetradecanoylphorbol-13-acetate (TPA). Phosphorylation at Thr 125 is sufficient to block caspase-9 processing and subsequent caspase-3 activation. We suggest that phosphorylation and inhibition of caspase-9 by ERK promotes cell survival during development and tissue homeostasis. This mechanism may also contribute to tumorigenesis when the ERK MAPK pathway is constitutively activated.


Assuntos
Apoptose/fisiologia , Caspases/metabolismo , Sobrevivência Celular/fisiologia , Transformação Celular Neoplásica/metabolismo , Células Eucarióticas/enzimologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Células 3T3 , Animais , Apoptose/efeitos dos fármacos , Sequência de Bases/genética , Caspase 3 , Caspase 9 , Sobrevivência Celular/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Grupo dos Citocromos c/efeitos dos fármacos , Grupo dos Citocromos c/metabolismo , Inibidores Enzimáticos/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Células Eucarióticas/efeitos dos fármacos , Células HeLa , Humanos , MAP Quinase Quinase 1 , Camundongos , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Dados de Sequência Molecular , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Piridinas/farmacologia , Proteínas Recombinantes de Fusão , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/fisiologia , Treonina/metabolismo
11.
BMC Cell Biol ; 11: 43, 2010 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-20565941

RESUMO

BACKGROUND: Regulator of chromosome condensation 1 (RCC1) is the guanine nucleotide exchange factor for Ran GTPase. Localised generation of Ran-GTP by RCC1 on chromatin is critical for nucleocytoplasmic transport, mitotic spindle assembly and nuclear envelope formation. Both the N-terminal tail of RCC1 and its association with Ran are important for its interaction with chromatin in cells. In vitro, the association of Ran with RCC1 induces a conformational change in the N-terminal tail that promotes its interaction with DNA. RESULTS: We have investigated the mechanism of the dynamic interaction of the alpha isoform of human RCC1 (RCC1alpha) with chromatin in live cells using fluorescence recovery after photobleaching (FRAP) of green fluorescent protein (GFP) fusions. We show that the N-terminal tail stabilises the interaction of RCC1alpha with chromatin and this function can be partially replaced by another lysine-rich nuclear localisation signal. Removal of the tail prevents the interaction of RCC1alpha with chromatin from being stabilised by RanT24N, a mutant that binds stably to RCC1alpha. The interaction of RCC1alpha with chromatin is destabilised by mutation of lysine 4 (K4Q), which abolishes alpha-N-terminal methylation, and this interaction is no longer stabilised by RanT24N. However, alpha-N-terminal methylation of RCC1alpha is not regulated by the binding of RanT24N. Conversely, the association of Ran with precipitated RCC1alpha does not require the N-terminal tail of RCC1alpha or its methylation. The mobility of RCC1alpha on chromatin is increased by mutation of aspartate 182 (D182A), which inhibits guanine-nucleotide exchange activity, but RCC1alphaD182A can still bind nucleotide-free Ran and its interaction with chromatin is stabilised by RanT24N. CONCLUSIONS: These results show that the stabilisation of the dynamic interaction of RCC1alpha with chromatin by Ran in live cells requires the N-terminal tail of RCC1alpha. alpha-N-methylation is not regulated by formation of the binary complex with Ran, but it promotes chromatin binding through the tail. This work supports a model in which the association of RCC1alpha with chromatin is promoted by a conformational change in the alpha-N-terminal methylated tail that is induced allosterically in the binary complex with Ran.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas Nucleares/metabolismo , Estabilidade Proteica , Proteína ran de Ligação ao GTP/metabolismo , Transporte Ativo do Núcleo Celular , Regulação Alostérica , Proteínas de Ciclo Celular/genética , Clonagem Molecular , Fatores de Troca do Nucleotídeo Guanina/genética , Células HeLa , Humanos , Metilação , Mutação/genética , Proteínas Nucleares/genética , Ligação Proteica/genética , Isoformas de Proteínas , Estrutura Terciária de Proteína/genética
12.
Curr Biol ; 17(16): R643-5, 2007 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-17714654

RESUMO

Alp7/TACC has been identified as an important target for Ran GTPase in spindle formation in fission yeast. This discovery underlines a general role for Ran in orchestrating mitosis in all eukaryotes.


Assuntos
Proteínas Associadas aos Microtúbulos/metabolismo , Mitose , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/citologia , Fuso Acromático/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Schizosaccharomyces/metabolismo
13.
BMC Cell Biol ; 10: 66, 2009 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-19765287

RESUMO

BACKGROUND: Ran GTPase has multiple functions during the cell division cycle, including nucleocytoplasmic transport, mitotic spindle assembly and nuclear envelope formation. The activity of Ran is determined by both its guanine nucleotide-bound state and its subcellular localization. RESULTS: Here, we have characterised the localisation and mobility of Ran coupled to green fluorescent protein (GFP) during the cell cycle in live human cells. Ran-GFP is nuclear during interphase and is dispersed throughout the cell during mitosis. GFP-RanQ69L, a mutant locked in the GTP-bound state, is less highly concentrated in the nucleus and associates with nuclear pore complexes within the nuclear envelope. During mitosis, GFP-RanQ69L is excluded from chromosomes and localizes to the spindle. By contrast, GFP-RanT24N, a mutant with low affinity for nucleotides, interacts relatively stably with chromatin throughout the cell cycle and is highly concentrated on mitotic chromosomes. CONCLUSION: These results show that Ran interacts dynamically with chromatin, nuclear pore complexes and the mitotic spindle during the cell cycle. These interactions are dependent on the nucleotide-bound state of the protein. Our data indicate that Ran-GTP generated at chromatin is highly mobile and interacts dynamically with distal structures that are involved in nuclear transport and mitotic spindle assembly.


Assuntos
Ciclo Celular , Cromatina/metabolismo , Proteína ran de Ligação ao GTP/metabolismo , Linhagem Celular , Sobrevivência Celular , Guanosina Trifosfato/metabolismo , Humanos , Mutação , Poro Nuclear/metabolismo , Ligação Proteica , Transporte Proteico , Proteína ran de Ligação ao GTP/genética
14.
Curr Biol ; 16(12): R466-8, 2006 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-16782004

RESUMO

The small GTPase Ran has been shown to regulate HURP, a protein that interacts with several mitotic spindle assembly factors. This discovery sheds new light on the role of Ran in the fidelity of mitosis and in cancer.


Assuntos
Mitose/fisiologia , Proteínas de Neoplasias/fisiologia , Fuso Acromático/metabolismo , Proteína ran de Ligação ao GTP/fisiologia , Animais , Humanos , Proteínas Associadas aos Microtúbulos/fisiologia , Proteínas de Neoplasias/metabolismo , Xenopus , Proteínas de Xenopus/metabolismo , Proteínas de Xenopus/fisiologia
15.
Biochem Biophys Res Commun ; 381(1): 59-64, 2009 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-19351595

RESUMO

Cellular responses to DNA damage are orchestrated by the large phosphoinositol-3-kinase related kinases ATM, ATR and DNA-PK. We have developed a cell-free system to dissect the biochemical mechanisms of these kinases. Using this system, we identify heterogeneous nuclear ribonucleoprotein U (hnRNP-U), also termed scaffold attachment factor A (SAF-A), as a specific substrate for DNA-PK. We show that hnRNP-U is phosphorylated at Ser59 by DNA-PK in vitro and in cells in response to DNA double-strand breaks. Phosphorylation of hnRNP-U suggests novel functions for DNA-PK in the response to DNA damage.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteína Quinase Ativada por DNA/metabolismo , Ribonucleoproteínas Nucleares Heterogêneas Grupo U/metabolismo , Serina/metabolismo , Sequência de Aminoácidos , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular Tumoral , Sistema Livre de Células/enzimologia , Quinase 1 do Ponto de Checagem , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Humanos , Dados de Sequência Molecular , Fosforilação , Poli dA-dT/metabolismo , Proteínas Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Supressoras de Tumor/metabolismo
17.
Biochem Biophys Res Commun ; 369(3): 973-6, 2008 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-18331829

RESUMO

Chk1 protein kinase plays a critical role in checkpoints that restrict progression through the cell cycle if DNA replication has not been completed or DNA damage has been sustained. ATR-dependent activation of Chk1 is mediated by Claspin. Phosphorylation of Claspin at two sites (Thr916 and Ser945 in humans) in response to DNA replication arrest or DNA damage recruits Chk1 to Claspin. Chk1 is subsequently phosphorylated by ATR and fully activated to control cell cycle progression. We show that ablation of Chk1 by siRNA in human cells or its genetic deletion in chicken DT40 cells does not prevent phosphorylation of Claspin at Thr916 (Ser911 in chicken). Chk1, however, does play other roles, possibly indirect, in the phosphorylation of Claspin and its induction. These results demonstrate that phosphorylation of Claspin within the Chk1-binding domain is catalysed by an ATR-dependent kinase distinct from Chk1.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Dano ao DNA , Replicação do DNA , Proteínas Quinases/metabolismo , Animais , Proteínas Mutadas de Ataxia Telangiectasia , Catálise , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Quinase 1 do Ponto de Checagem , Galinhas/genética , Galinhas/metabolismo , DNA/efeitos dos fármacos , DNA/efeitos da radiação , Replicação do DNA/efeitos dos fármacos , Replicação do DNA/efeitos da radiação , Humanos , Fosforilação , Proteínas Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína , RNA Interferente Pequeno/farmacologia , Treonina/metabolismo
18.
Mol Cell Biol ; 25(23): 10543-55, 2005 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16287866

RESUMO

Caspase 9 is a critical component of the mitochondrial or intrinsic apoptotic pathway and is activated by Apaf-1 following release of cytochrome c from mitochondria in response to a variety of stimuli. Caspase 9 cleaves and activates effector caspases, mainly caspase 3, leading to the demise of the cell. Survival signaling pathways can impinge on this pathway to restrain apoptosis. Here, we have identified Ser144 of human caspase 9as an inhibitory site that is phosphorylated in a cell-free system and in cells in response to the protein phosphatase inhibitor okadaic acid. Inhibitor sensitivity and interactions with caspase 9 indicate that the predominant kinase that targets Ser144 is the atypical protein kinase C isoform zeta (PKCzeta). Prevention of Ser144 phosphorylation by inhibition of PKCzeta or mutation of caspase 9 promotes caspase 3 activation. Phosphorylation of serine 144 in cells is also induced by hyperosmotic stress, which activates PKCzeta and regulates its interaction with caspase 9, but not by growth factors, phorbol ester, or other cellular stresses. These results indicate that phosphorylation and inhibition of caspase 9 by PKCzeta restrain the intrinsic apoptotic pathway during hyperosmotic stress. This work provides further evidence that caspase 9 acts as a focal point for multiple protein kinase signaling pathways that regulate apoptosis.


Assuntos
Caspases/metabolismo , Proteína Quinase C/metabolismo , Sequência de Aminoácidos , Animais , Caspase 9 , Caspases/química , Caspases/genética , Extratos Celulares , Linhagem Celular , Citosol/efeitos dos fármacos , Citosol/enzimologia , Ativação Enzimática , Humanos , Isoenzimas/metabolismo , Camundongos , Dados de Sequência Molecular , Pressão Osmótica , Fosforilação , Fosfosserina/metabolismo , Ligação Proteica , Proteína Quinase C/antagonistas & inibidores , Proteína Quinase C/genética , Inibidores de Proteínas Quinases/farmacologia
19.
Mol Cell Oncol ; 5(6): e1516450, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30525093

RESUMO

Mitotic arrest can result in cell death through the process of apoptosis. We have shown by live-cell imaging that the ubiquitin-proteasome dependent proteolysis of the apoptotic regulator Mcl-1 under the control of the anaphase-promoting complex or cyclosome (APC/C) provides a timing mechanism that distinguishes prolonged mitotic arrest from normal mitosis.

20.
Cell Rep ; 23(3): 852-865, 2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-29669289

RESUMO

Faithful chromosome segregation during mitosis depends on the spindle assembly checkpoint (SAC), which delays progression through mitosis until every chromosome has stably attached to spindle microtubules via the kinetochore. We show here that the deubiquitinase USP9X strengthens the SAC by antagonizing the turnover of the mitotic checkpoint complex produced at unattached kinetochores. USP9X thereby opposes activation of anaphase-promoting complex/cyclosome (APC/C) and specifically inhibits the mitotic degradation of SAC-controlled APC/C substrates. We demonstrate that depletion or loss of USP9X reduces the effectiveness of the SAC, elevates chromosome segregation defects, and enhances chromosomal instability (CIN). These findings provide a rationale to explain why loss of USP9X could be either pro- or anti-tumorigenic depending on the existing level of CIN.


Assuntos
Mitose , Fuso Acromático/metabolismo , Ubiquitina Tiolesterase/metabolismo , Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Subunidade Apc11 do Ciclossomo-Complexo Promotor de Anáfase/antagonistas & inibidores , Subunidade Apc11 do Ciclossomo-Complexo Promotor de Anáfase/genética , Subunidade Apc11 do Ciclossomo-Complexo Promotor de Anáfase/metabolismo , Proteínas Cdc20/metabolismo , Instabilidade Cromossômica , Segregação de Cromossomos , Ciclina B/metabolismo , Células HeLa , Humanos , Cariótipo , Cinesinas/metabolismo , Cinetocoros/metabolismo , Mitose/efeitos dos fármacos , Quinases Relacionadas a NIMA/metabolismo , Nocodazol/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Ubiquitina Tiolesterase/antagonistas & inibidores , Ubiquitina Tiolesterase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA