Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Comput Biol ; 11(9): e1004470, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26325505

RESUMO

An important goal in molecular biology is to understand functional changes upon single-point mutations in proteins. Doing so through a detailed characterization of structure spaces and underlying energy landscapes is desirable but continues to challenge methods based on Molecular Dynamics. In this paper we propose a novel algorithm, SIfTER, which is based instead on stochastic optimization to circumvent the computational challenge of exploring the breadth of a protein's structure space. SIfTER is a data-driven evolutionary algorithm, leveraging experimentally-available structures of wildtype and variant sequences of a protein to define a reduced search space from where to efficiently draw samples corresponding to novel structures not directly observed in the wet laboratory. The main advantage of SIfTER is its ability to rapidly generate conformational ensembles, thus allowing mapping and juxtaposing landscapes of variant sequences and relating observed differences to functional changes. We apply SIfTER to variant sequences of the H-Ras catalytic domain, due to the prominent role of the Ras protein in signaling pathways that control cell proliferation, its well-studied conformational switching, and abundance of documented mutations in several human tumors. Many Ras mutations are oncogenic, but detailed energy landscapes have not been reported until now. Analysis of SIfTER-computed energy landscapes for the wildtype and two oncogenic variants, G12V and Q61L, suggests that these mutations cause constitutive activation through two different mechanisms. G12V directly affects binding specificity while leaving the energy landscape largely unchanged, whereas Q61L has pronounced, starker effects on the landscape. An implementation of SIfTER is made available at http://www.cs.gmu.edu/~ashehu/?q=OurTools. We believe SIfTER is useful to the community to answer the question of how sequence mutations affect the function of a protein, when there is an abundance of experimental structures that can be exploited to reconstruct an energy landscape that would be computationally impractical to do via Molecular Dynamics.


Assuntos
Algoritmos , Biologia Computacional/métodos , Modelos Moleculares , Proteína Oncogênica p21(ras)/química , Proteína Oncogênica p21(ras)/genética , Cristalografia , Humanos , Mutação , Proteína Oncogênica p21(ras)/metabolismo , Análise de Componente Principal , Conformação Proteica , Termodinâmica
2.
J Comput Biol ; 22(9): 844-60, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26203626

RESUMO

Evidence is emerging that many proteins involved in proteinopathies are dynamic molecules switching between stable and semistable structures to modulate their function. A detailed understanding of the relationship between structure and function in such molecules demands a comprehensive characterization of their conformation space. Currently, only stochastic optimization methods are capable of exploring conformation spaces to obtain sample-based representations of associated energy surfaces. These methods have to address the fundamental but challenging issue of balancing computational resources between exploration (obtaining a broad view of the space) and exploitation (going deep in the energy surface). We propose a novel algorithm that strikes an effective balance by employing concepts from evolutionary computation. The algorithm leverages deposited crystal structures of wildtype and variant sequences of a protein to define a reduced, low-dimensional search space from where to rapidly draw samples. A multiscale technique maps samples to local minima of the all-atom energy surface of a protein under investigation. Several novel algorithmic strategies are employed to avoid premature convergence to particular minima and obtain a broad view of a possibly multibasin energy surface. Analysis of applications on different proteins demonstrates the broad utility of the algorithm to map multibasin energy landscapes and advance modeling of multibasin proteins. In particular, applications on wildtype and variant sequences of proteins involved in proteinopathies demonstrate that the algorithm makes an important first step toward understanding the impact of sequence mutations on misfunction by providing the energy landscape as the intermediate explanatory link between protein sequence and function.


Assuntos
Biologia Computacional/métodos , Proteínas/química , Estatística como Assunto/métodos , Algoritmos , Simulação por Computador , Mutação/genética , Conformação Proteica , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA