Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Inorg Chem ; 63(32): 14924-14932, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39129449

RESUMO

Research on the synthesis of catenated cages has been a growing field of interest in the past few years. While multiple types of catenated cages with different structures have been synthesized, the application of such systems has been much less explored. Specifically, the use of catenated cages in the separation of industrially relevant molecules that are present in coal tar has not been explored before. Herein, we demonstrate the use of a newly synthesized interlocked cage 1 [C184H240N76O48Pd6] (M6L4), formed through the self-assembly of ligand L.HNO3 (tris(4-(1H-imidazole-1-yl)benzylidene)hydrazine-1-carbohydrazonhydrazide) with acceptor cis-[(tmchda)Pd(NO3)2] [tmchda = ±N,N,N',N'-tetramethylcyclohexane-1,2-diamine] (M). The interlocked cage 1 was able to separate the isomers (anthracene and phenanthrene) using a simple solvent extraction technique. Using the same technique, the much more difficult separation of structurally and physiochemically similar compounds acenaphthene and acenaphthylene was performed for the first time with 1 as the host. Other noninterlocked hexanuclear Pd6 cages having a wider cavity proved inefficient for such separation, demonstrating the uniqueness of the interlocked cage 1 for such challenging separation.

2.
J Am Chem Soc ; 145(43): 23461-23469, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37851534

RESUMO

Binary metastable semiconductor materials offer exciting possibilities in the field of optoelectronics, such as photovoltaics, tunable photosensors, and detectors. However, understanding their properties and translating them into practical applications can sometimes be challenging, owing to their thermodynamic instability. Herein, we report a temperature-controlled crystallization technique involving electrochemical deposition to produce metastable CuTe2 thin films that can reliably function under ambient conditions. A series of in situ heating/cooling cycle tests from room temperature to 200 °C followed by spectral, morphological, and compound analyses (such as ultraviolet-visible light spectroscopy, X-ray diffraction (XRD) analysis, and X-ray photoelectron spectroscopy (XPS)) suggest that the seeding electrodes play a key role in the realization of the metastable phase in CuTe2 films. In particular, CuTe2 films deposited on Al electrodes exhibit superior crystallinity and long-term stability compared with those grown on a Au substrate. The XRD data of thermally annealed CuTe2 thin films deposited on Al show a markedly sharp peak, indicating significantly increased crystal-domain sizes. Our method can be used to achieve the metastable phase of CuTe2 with a bandgap of 1.67 eV and offers outstanding photoresponsivity under different illumination conditions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA