Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 24(11): 1890-1907, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37749325

RESUMO

CD8+ T cells provide robust antiviral immunity, but how epitope-specific T cells evolve across the human lifespan is unclear. Here we defined CD8+ T cell immunity directed at the prominent influenza epitope HLA-A*02:01-M158-66 (A2/M158) across four age groups at phenotypic, transcriptomic, clonal and functional levels. We identify a linear differentiation trajectory from newborns to children then adults, followed by divergence and a clonal reset in older adults. Gene profiles in older adults closely resemble those of newborns and children, despite being clonally distinct. Only child-derived and adult-derived A2/M158+CD8+ T cells had the potential to differentiate into highly cytotoxic epitope-specific CD8+ T cells, which was linked to highly functional public T cell receptor (TCR)αß signatures. Suboptimal TCRαß signatures in older adults led to less proliferation, polyfunctionality, avidity and recognition of peptide mutants, although displayed no signs of exhaustion. These data suggest that priming T cells at different stages of life might greatly affect CD8+ T cell responses toward viral infections.


Assuntos
Linfócitos T CD8-Positivos , Longevidade , Recém-Nascido , Humanos , Idoso , Epitopos de Linfócito T/genética , Linfócitos T Citotóxicos , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T/genética
2.
Nat Immunol ; 24(6): 966-978, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37248417

RESUMO

High-risk groups, including Indigenous people, are at risk of severe COVID-19. Here we found that Australian First Nations peoples elicit effective immune responses to COVID-19 BNT162b2 vaccination, including neutralizing antibodies, receptor-binding domain (RBD) antibodies, SARS-CoV-2 spike-specific B cells, and CD4+ and CD8+ T cells. In First Nations participants, RBD IgG antibody titers were correlated with body mass index and negatively correlated with age. Reduced RBD antibodies, spike-specific B cells and follicular helper T cells were found in vaccinated participants with chronic conditions (diabetes, renal disease) and were strongly associated with altered glycosylation of IgG and increased interleukin-18 levels in the plasma. These immune perturbations were also found in non-Indigenous people with comorbidities, indicating that they were related to comorbidities rather than ethnicity. However, our study is of a great importance to First Nations peoples who have disproportionate rates of chronic comorbidities and provides evidence of robust immune responses after COVID-19 vaccination in Indigenous people.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Vacina BNT162 , COVID-19/prevenção & controle , Linfócitos T CD8-Positivos , Austrália/epidemiologia , SARS-CoV-2 , Imunoglobulina G , Anticorpos Neutralizantes , Imunidade , Anticorpos Antivirais , Vacinação
3.
Nat Immunol ; 20(5): 613-625, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30778243

RESUMO

Influenza A, B and C viruses (IAV, IBV and ICV, respectively) circulate globally and infect humans, with IAV and IBV causing the most severe disease. CD8+ T cells confer cross-protection against IAV strains, however the responses of CD8+ T cells to IBV and ICV are understudied. We investigated the breadth of CD8+ T cell cross-recognition and provide evidence of CD8+ T cell cross-reactivity across IAV, IBV and ICV. We identified immunodominant CD8+ T cell epitopes from IBVs that were protective in mice and found memory CD8+ T cells directed against universal and influenza-virus-type-specific epitopes in the blood and lungs of healthy humans. Lung-derived CD8+ T cells displayed tissue-resident memory phenotypes. Notably, CD38+Ki67+CD8+ effector T cells directed against novel epitopes were readily detected in IAV- or IBV-infected pediatric and adult subjects. Our study introduces a new paradigm whereby CD8+ T cells confer unprecedented cross-reactivity across all influenza viruses, a key finding for the design of universal vaccines.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Reações Cruzadas/imunologia , Gammainfluenzavirus/imunologia , Vírus da Influenza A/imunologia , Vírus da Influenza B/imunologia , Influenza Humana/imunologia , Adolescente , Adulto , Idoso , Animais , Linfócitos T CD8-Positivos/virologia , Criança , Epitopos de Linfócito T/imunologia , Feminino , Humanos , Vírus da Influenza A/fisiologia , Vírus da Influenza B/fisiologia , Vacinas contra Influenza/imunologia , Influenza Humana/virologia , Gammainfluenzavirus/fisiologia , Masculino , Camundongos , Pessoa de Meia-Idade , Adulto Jovem
4.
Immunity ; 55(7): 1299-1315.e4, 2022 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-35750048

RESUMO

As the establishment of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cell memory in children remains largely unexplored, we recruited convalescent COVID-19 children and adults to define their circulating memory SARS-CoV-2-specific CD4+ and CD8+ T cells prior to vaccination. We analyzed epitope-specific T cells directly ex vivo using seven HLA class I and class II tetramers presenting SARS-CoV-2 epitopes, together with Spike-specific B cells. Unvaccinated children who seroconverted had comparable Spike-specific but lower ORF1a- and N-specific memory T cell responses compared with adults. This agreed with our TCR sequencing data showing reduced clonal expansion in children. A strong stem cell memory phenotype and common T cell receptor motifs were detected within tetramer-specific T cells in seroconverted children. Conversely, children who did not seroconvert had tetramer-specific T cells of predominantly naive phenotypes and diverse TCRαß repertoires. Our study demonstrates the generation of SARS-CoV-2-specific T cell memory with common TCRαß motifs in unvaccinated seroconverted children after their first virus encounter.


Assuntos
COVID-19 , SARS-CoV-2 , Linfócitos T CD4-Positivos , Linfócitos T CD8-Positivos , Epitopos de Linfócito T , Humanos , Memória Imunológica , Receptores de Antígenos de Linfócitos T , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Glicoproteína da Espícula de Coronavírus
5.
PLoS Pathog ; 18(3): e1010337, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35255101

RESUMO

HLA-A*11:01 is one of the most prevalent human leukocyte antigens (HLAs), especially in East Asian and Oceanian populations. It is also highly expressed in Indigenous people who are at high risk of severe influenza disease. As CD8+ T cells can provide broadly cross-reactive immunity to distinct influenza strains and subtypes, including influenza A, B and C viruses, understanding CD8+ T cell immunity to influenza viruses across prominent HLA types is needed to rationally design a universal influenza vaccine and generate protective immunity especially for high-risk populations. As only a handful of HLA-A*11:01-restricted CD8+ T cell epitopes have been described for influenza A viruses (IAVs) and epitopes for influenza B viruses (IBVs) were still unknown, we embarked on an epitope discovery study to define a CD8+ T cell landscape for HLA-A*11:01-expressing Indigenous and non-Indigenous Australian people. Using mass-spectrometry, we identified IAV- and IBV-derived peptides presented by HLA-A*11:01 during infection. 79 IAV and 57 IBV peptides were subsequently screened for immunogenicity in vitro with peripheral blood mononuclear cells from HLA-A*11:01-expressing Indigenous and non-Indigenous Australian donors. CD8+ T cell immunogenicity screening revealed two immunogenic IAV epitopes (A11/PB2320-331 and A11/PB2323-331) and the first HLA-A*11:01-restricted IBV epitopes (A11/M41-49, A11/NS1186-195 and A11/NP511-520). The immunogenic IAV- and IBV-derived peptides were >90% conserved among their respective influenza viruses. Identification of novel immunogenic HLA-A*11:01-restricted CD8+ T cell epitopes has implications for understanding how CD8+ T cell immunity is generated towards IAVs and IBVs. These findings can inform the development of rationally designed, broadly cross-reactive influenza vaccines to ensure protection from severe influenza disease in HLA-A*11:01-expressing individuals.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Austrália , Linfócitos T CD8-Positivos , Epitopos de Linfócito T , Antígenos HLA-A , Humanos , Povos Indígenas , Vírus da Influenza B , Leucócitos Mononucleares , Peptídeos
6.
Proc Natl Acad Sci U S A ; 118(41)2021 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-34607957

RESUMO

Morbidity and mortality rates from seasonal and pandemic influenza occur disproportionately in high-risk groups, including Indigenous people globally. Although vaccination against influenza is recommended for those most at risk, studies on immune responses elicited by seasonal vaccines in Indigenous populations are largely missing, with no data available for Indigenous Australians and only one report published on antibody responses in Indigenous Canadians. We recruited 78 Indigenous and 84 non-Indigenous Australians vaccinated with the quadrivalent influenza vaccine into the Looking into InFluenza T cell immunity - Vaccination cohort study and collected blood to define baseline, early (day 7), and memory (day 28) immune responses. We performed in-depth analyses of T and B cell activation, formation of memory B cells, and antibody profiles and investigated host factors that could contribute to vaccine responses. We found activation profiles of circulating T follicular helper type-1 cells at the early stage correlated strongly with the total change in antibody titers induced by vaccination. Formation of influenza-specific hemagglutinin-binding memory B cells was significantly higher in seroconverters compared with nonseroconverters. In-depth antibody characterization revealed a reduction in immunoglobulin G3 before and after vaccination in the Indigenous Australian population, potentially linked to the increased frequency of the G3m21* allotype. Overall, our data provide evidence that Indigenous populations elicit robust, broad, and prototypical immune responses following immunization with seasonal inactivated influenza vaccines. Our work strongly supports the recommendation of influenza vaccination to protect Indigenous populations from severe seasonal influenza virus infections and their subsequent complications.


Assuntos
Anticorpos Antivirais/sangue , Povos Indígenas/estatística & dados numéricos , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Ativação Linfocitária/imunologia , Austrália , Linfócitos B/imunologia , Humanos , Imunoglobulina G/sangue , Memória Imunológica/imunologia , Influenza Humana/imunologia , Influenza Humana/virologia , Contagem de Linfócitos , Vacinação em Massa , Risco , Células T Auxiliares Foliculares/imunologia , Linfócitos T/imunologia
7.
Immunol Cell Biol ; 101(10): 964-974, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37725525

RESUMO

Indigenous peoples globally are at increased risk of COVID-19-associated morbidity and mortality. However, data that describe immune responses to SARS-CoV-2 infection in Indigenous populations are lacking. We evaluated immune responses in Australian First Nations peoples hospitalized with COVID-19. Our work comprehensively mapped out inflammatory, humoral and adaptive immune responses following SARS-CoV-2 infection. Patients were recruited early following the lifting of strict public health measures in the Northern Territory, Australia, between November 2021 and May 2022. Australian First Nations peoples recovering from COVID-19 showed increased levels of MCP-1 and IL-8 cytokines, IgG-antibodies against Delta-RBD and memory SARS-CoV-2-specific T cell responses prior to hospital discharge in comparison with hospital admission, with resolution of hyperactivated HLA-DR+ CD38+ T cells. SARS-CoV-2 infection elicited coordinated ASC, Tfh and CD8+ T cell responses in concert with CD4+ T cell responses. Delta and Omicron RBD-IgG, as well as Ancestral N-IgG antibodies, strongly correlated with Ancestral RBD-IgG antibodies and Spike-specific memory B cells. We provide evidence of broad and robust immune responses following SARS-CoV-2 infection in Indigenous peoples, resembling those of non-Indigenous COVID-19 hospitalized patients.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Austrália , Imunoglobulina G , Povos Indígenas , Imunidade , Anticorpos Antivirais
8.
Nature ; 547(7661): 89-93, 2017 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-28636592

RESUMO

T cells are defined by a heterodimeric surface receptor, the T cell receptor (TCR), that mediates recognition of pathogen-associated epitopes through interactions with peptide and major histocompatibility complexes (pMHCs). TCRs are generated by genomic rearrangement of the germline TCR locus, a process termed V(D)J recombination, that has the potential to generate marked diversity of TCRs (estimated to range from 1015 (ref. 1) to as high as 1061 (ref. 2) possible receptors). Despite this potential diversity, TCRs from T cells that recognize the same pMHC epitope often share conserved sequence features, suggesting that it may be possible to predictively model epitope specificity. Here we report the in-depth characterization of ten epitope-specific TCR repertoires of CD8+ T cells from mice and humans, representing over 4,600 in-frame single-cell-derived TCRαß sequence pairs from 110 subjects. We developed analytical tools to characterize these epitope-specific repertoires: a distance measure on the space of TCRs that permits clustering and visualization, a robust repertoire diversity metric that accommodates the low number of paired public receptors observed when compared to single-chain analyses, and a distance-based classifier that can assign previously unobserved TCRs to characterized repertoires with robust sensitivity and specificity. Our analyses demonstrate that each epitope-specific repertoire contains a clustered group of receptors that share core sequence similarities, together with a dispersed set of diverse 'outlier' sequences. By identifying shared motifs in core sequences, we were able to highlight key conserved residues driving essential elements of TCR recognition. These analyses provide insights into the generalizable, underlying features of epitope-specific repertoires and adaptive immune recognition.


Assuntos
Epitopos de Linfócito T/química , Epitopos de Linfócito T/imunologia , Receptores de Antígenos de Linfócitos T/química , Receptores de Antígenos de Linfócitos T/imunologia , Algoritmos , Animais , Linfócitos T CD8-Positivos/química , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Análise por Conglomerados , Feminino , Humanos , Masculino , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T alfa-beta/química , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Especificidade por Substrato , Recombinação V(D)J
10.
Nucleic Acids Res ; 46(D1): D419-D427, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-28977646

RESUMO

The ability to decode antigen specificities encapsulated in the sequences of rearranged T-cell receptor (TCR) genes is critical for our understanding of the adaptive immune system and promises significant advances in the field of translational medicine. Recent developments in high-throughput sequencing methods (immune repertoire sequencing technology, or RepSeq) and single-cell RNA sequencing technology have allowed us to obtain huge numbers of TCR sequences from donor samples and link them to T-cell phenotypes. However, our ability to annotate these TCR sequences still lags behind, owing to the enormous diversity of the TCR repertoire and the scarcity of available data on T-cell specificities. In this paper, we present VDJdb, a database that stores and aggregates the results of published T-cell specificity assays and provides a universal platform that couples antigen specificities with TCR sequences. We demonstrate that VDJdb is a versatile instrument for the annotation of TCR repertoire data, enabling a concatenated view of antigen-specific TCR sequence motifs. VDJdb can be accessed at https://vdjdb.cdr3.net and https://github.com/antigenomics/vdjdb-db.


Assuntos
Antígenos/química , Bases de Dados de Proteínas , Anotação de Sequência Molecular , Receptores de Antígenos de Linfócitos T/química , Software , Sequência de Aminoácidos , Animais , Antígenos/imunologia , Antígenos/metabolismo , Sítios de Ligação , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Internet , Macaca mulatta , Complexo Principal de Histocompatibilidade/genética , Complexo Principal de Histocompatibilidade/imunologia , Camundongos , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estrutura Secundária de Proteína , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos de Linfócitos T/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Análise de Célula Única , Linfócitos T/citologia , Linfócitos T/imunologia
11.
Immunol Cell Biol ; 97(5): 498-511, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30803026

RESUMO

Special AT-rich binding protein-1 (SATB1) is a global chromatin organizer capable of activating or repressing gene transcription in mice and humans. The role of SATB1 is pivotal for T-cell development, with SATB1-knockout mice being neonatally lethal, although the exact mechanism is unknown. Moreover, SATB1 is dysregulated in T-cell lymphoma and proposed to suppress transcription of the Pdcd1 gene, encoding the immune checkpoint programmed cell death protein 1 (PD-1). Thus, SATB1 expression in T-cell subsets across different tissue compartments in humans is of potential importance for targeting PD-1. Here, we comprehensively analyzed SATB1 expression across different human tissues and immune compartments by flow cytometry and correlated this with PD-1 expression. We investigated SATB1 protein levels in pediatric and adult donors and assessed expression dynamics of this chromatin organizer across different immune cell subsets in human organs, as well as in antigen-specific T cells directed against acute and chronic viral infections. Our data demonstrate that SATB1 expression in humans is the highest in T-cell progenitors in the thymus, and then becomes downregulated in mature T cells in the periphery. Importantly, SATB1 expression in peripheral mature T cells is not static and follows fine-tuned expression dynamics, which appear to be tissue- and antigen-dependent. Furthermore, SATB1 expression negatively correlates with PD-1 expression in virus-specific CD8+ T cells. Our study has implications for understanding the role of SATB1 in human health and disease and suggests an approach for modulating PD-1 in T cells, highly relevant to human malignancies or chronic viral infections.


Assuntos
Envelhecimento , Regulação da Expressão Gênica/imunologia , Proteínas de Ligação à Região de Interação com a Matriz , Adulto , Idoso , Envelhecimento/imunologia , Envelhecimento/metabolismo , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Proteínas de Ligação à Região de Interação com a Matriz/biossíntese , Proteínas de Ligação à Região de Interação com a Matriz/imunologia , Pessoa de Meia-Idade , Especificidade de Órgãos/fisiologia , Receptor de Morte Celular Programada 1/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Timócitos/citologia , Timócitos/imunologia
12.
Proc Natl Acad Sci U S A ; 113(16): 4440-5, 2016 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-27036003

RESUMO

Memory CD8(+)T lymphocytes (CTLs) specific for antigenic peptides derived from internal viral proteins confer broad protection against distinct strains of influenza A virus (IAV). However, immune efficacy can be undermined by the emergence of escape mutants. To determine how T-cell receptor (TCR) composition relates to IAV epitope variability, we used ex vivo peptide-HLA tetramer enrichment and single-cell multiplex analysis to compare TCRs targeted to the largely conserved HLA-A*0201-M158and the hypervariable HLA-B*3501-NP418antigens. The TCRαßs for HLA-B*3501-NP418 (+)CTLs varied among individuals and across IAV strains, indicating that a range of mutated peptides will prime different NP418-specific CTL sets. Conversely, a dominant public TRAV27/TRBV19(+)TCRαß was selected in HLA-A*0201(+)donors responding to M158 This public TCR cross-recognized naturally occurring M158variants complexed with HLA-A*0201. Ternary structures showed that induced-fit molecular mimicry underpins TRAV27/TRBV19(+)TCR specificity for the WT and mutant M158peptides, suggesting the possibility of universal CTL immunity in HLA-A*0201(+)individuals. Combined with the high population frequency of HLA-A*0201, these data potentially explain the relative conservation of M158 Moreover, our results suggest that vaccination strategies aimed at generating broad protection should incorporate variant peptides to elicit cross-reactive responses against other specificities, especially those that may be relatively infrequent among IAV-primed memory CTLs.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Antígeno HLA-A2 , Imunidade Celular , Vírus da Influenza A/imunologia , Influenza Humana , Receptores de Antígenos de Linfócitos T alfa-beta , Animais , Antígenos Virais/imunologia , Cães , Feminino , Antígeno HLA-A2/genética , Antígeno HLA-A2/imunologia , Humanos , Memória Imunológica/genética , Vírus da Influenza A/genética , Influenza Humana/genética , Influenza Humana/imunologia , Células Madin Darby de Rim Canino , Masculino , Peptídeos/genética , Peptídeos/imunologia , Peptídeos/farmacologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T alfa-beta/imunologia , Vacinação , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/farmacologia
14.
J Virol ; 90(15): 6936-6947, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27226365

RESUMO

UNLABELLED: Novel influenza viruses often cause differential infection patterns across different age groups, an effect that is defined as heterogeneous demographic susceptibility. This occurred during the A/H2N2 pandemic, when children experienced higher influenza attack rates than adults. Since the recognition of conserved epitopes across influenza subtypes by CD8(+) cytotoxic T lymphocytes (CTLs) limit influenza disease, we hypothesized that conservation of CTL antigenic peptides (Ag-p) in viruses circulating before the pH2N2-1957 may have resulted in differential CTL immunity. We compared viruses isolated in the years preceding the pandemic (1941 to 1957) to which children and adults were exposed to viruses circulating decades earlier (1918 to 1940), which could infect adults only. Consistent with phylogenetic models, influenza viruses circulating from 1941 to 1957, which infected children, shared with pH2N2 the majority (∼89%) of the CTL peptides within the most immunogenic nucleoprotein, matrix 1, and polymerase basic 1, thus providing evidence for minimal pH2N2 CTL escape in children. Our study, however, identified potential CTL immune evasion from pH2N2 irrespective of age, within HLA-A*03:01(+) individuals for PB1471-L473V/N476I variants and HLA-B*15:01(+) population for NP404-414-V408I mutant. Further experiments using the murine model of B-cell-deficient mice showed that multiple influenza infections resulted in superior protection from influenza-induced morbidity, coinciding with accumulation of tissue-resident memory CD8(+) T cells in the lung. Our study suggests that protection against H2N2-1957 pandemic influenza was most likely linked to the number of influenza virus infections prior to the pandemic challenge rather than differential preexisting CTL immunity. Thus, the regimen of a CTL-based vaccine/vaccine-component may benefit from periodic boosting to achieve fully protective, asymptomatic influenza infection. IMPORTANCE: Due to a lack of cross-reactive neutralizing antibodies, children are particularly susceptible to influenza infections caused by novel viral strains. Preexisting T cell immunity directed at conserved viral regions, however, can provide protection against influenza viruses, promote rapid recovery and better clinical outcomes. When we asked whether high susceptibility of children (compared to adults) to the pandemic H2N2 influenza strain was associated with immune evasion from T-cell immunity, we found high conservation within T-cell antigenic regions in pandemic H2N2. However, the number of influenza infections prior to the challenge was linked to protective, asymptomatic infections and establishment of tissue-resident memory T cells. Our study supports development of vaccines that prime and boost T cells to elicit cross-strain protective T cells, especially tissue-resident memory T cells, for lifelong immunity against distinct influenza viruses.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Epitopos de Linfócito T/imunologia , Influenza Humana/imunologia , Infecções por Orthomyxoviridae/imunologia , Orthomyxoviridae/imunologia , Pandemias , Linfócitos T Citotóxicos/imunologia , Adulto , Animais , Linfócitos B/imunologia , Criança , Proteção Cruzada , Evolução Molecular , Feminino , Humanos , Influenza Humana/virologia , Camundongos , Infecções por Orthomyxoviridae/virologia , Filogenia
15.
J Immunol ; 194(3): 898-910, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25535284

RESUMO

The characteristics of the TCR repertoire expressed by epitope-specific CD8(+) T cells can be an important determinant of the quality of immune protection against virus infection. Most studies of epitope-specific TCR repertoires focus solely on an analysis of TCR ß-chains, rather than the combined TCRαß heterodimers that confer specificity. Hence, the importance of complementary α- and ß-chain pairing in determining TCR specificity and T cell function is not well understood. Our earlier study of influenza-specific TCR repertoires in a C57BL/6J mouse model described a structural basis for preferred TCRαß pairing that determined exquisite specificity for the D(b)PA224 epitope from influenza A virus. We have now extended this analysis using retrogenic mice engineered to express single TCR α- or ß-chains specific for the D(b)NP366 or D(b)PA224 epitopes derived from influenza A virus. We found that particular TCRαß combinations were selected for recognition of these epitopes following infection, indicating that pairing of certain α- and ß-chain sequences is key for determining TCR specificity. Furthermore, we demonstrated that some TCRαß heterodimers were preferentially expanded from the naive repertoire in response to virus infection, suggesting that appropriate αß pairing confers optimal T cell responsiveness to Ag.


Assuntos
Epitopos de Linfócito T/imunologia , Variação Genética , Antígenos de Histocompatibilidade Classe I/imunologia , Vírus da Influenza A/imunologia , Peptídeos/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Especificidade do Receptor de Antígeno de Linfócitos T , Sequência de Aminoácidos , Animais , Linhagem Celular , Sequência Conservada , Feminino , Imunidade Celular/genética , Imunidade Celular/imunologia , Camundongos , Camundongos Transgênicos , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo
16.
Immunol Cell Biol ; 94(4): 367-77, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26493179

RESUMO

Indigenous populations, including Indigenous Australians, are highly susceptible to severe influenza disease and the underlying mechanisms are unknown. We studied immune and genetic factors that could predicate severe influenza disease in Indigenous Australians enrolled in the LIFT study: looking into influenza T-cell immunity. To examine CD8(+) T-cell immunity, we characterised human leukocyte antigen (HLA) profiles. HLA typing confirmed previous studies showing predominant usage of HLA-A*02:01, 11:01, 24:02, 34:01 and HLA-B*13:01, 15:21, 40:01/02, 56:01/02 in Indigenous Australians. We identified two new HLA alleles (HLA-A*02:new and HLA-B*56:new). Modelling suggests that variations within HLA-A*02:new (but not HLA-B56:new) could affect peptide binding. There is a relative lack of known influenza epitopes for the majority of these HLAs, with the exception of a universal HLA-A*02:01-M158 epitope and proposed epitopes presented by HLA-A*11:01/HLA-A*24:02. To dissect universal CD8(+) T-cell responses, we analysed the magnitude, function and T-cell receptor (TCR) clonality of HLA-A*02:01-M158(+)CD8(+) T cells. We found comparable IFN-γ, TNF and CD107a and TCRαß characteristics in Indigenous and non-Indigenous Australians, suggesting that the ~15% of Indigenous people that express HLA-A*02:01 have universal influenza-specific CD8(+) T-cell immunity. Furthermore, the frequency of an influenza host risk factor, IFITM3-C/C, was comparable between Indigenous Australians and Europeans, suggesting that expression of this allele does not explain increased disease severity at a population level. Our study indicates a need to identify novel influenza-specific CD8(+) T-cell epitopes restricted by HLA-A and HLA-B alleles prevalent in Indigenous populations for the rational design of universal T-cell vaccines.


Assuntos
Linfócitos T CD8-Positivos/fisiologia , Antígenos HLA/genética , Influenza Humana/imunologia , Havaiano Nativo ou Outro Ilhéu do Pacífico , Adulto , Alelos , Células Cultivadas , Epitopos de Linfócito T/metabolismo , Feminino , Teste de Histocompatibilidade , Humanos , Vacinas contra Influenza , Influenza Humana/genética , Interferon gama/metabolismo , Proteína 1 de Membrana Associada ao Lisossomo/metabolismo , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Proteínas de Ligação a RNA/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Risco , Fator de Necrose Tumoral alfa/metabolismo , Proteínas da Matriz Viral/metabolismo
17.
Immunol Cell Biol ; 93(10): 909-13, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26077508

RESUMO

Suppressor of cytokine signaling (SOCS) proteins are key regulators of innate and adaptive immunity. Mice lacking functional SOCS4 are hypersusceptible to primary infection with influenza A virus (IAV), displaying dysregulated pro-inflammatory cytokine and chemokine production in the lungs, delayed viral clearance and impaired trafficking of influenza-specific CD8(+) T cells to the site of infection. Therefore, we postulated that SOCS4 is a critical regulator of anti-viral immunity. Unexpectedly, SOCS4 was not required for CD8(+) T-cell memory generation, nor was it required to efficiently recall those cells in response to secondary IAV infection. Wild-type or SOCS4-deficient mice primed and re-challenged with serologically different influenza strains, did not show differences in susceptibility to IAV and cleared the virus from the lungs at the same rate. We have not observed differences in trafficking or numbers of IAV-specific cells, numbers of resident memory T cells or in cytokine profiles in lungs of infected animals. Our data show that despite an impaired primary immune response in Socs4(R108X/R108X) mice, SOCS4 is dispensable for an efficient recall response to influenza virus infection.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Pulmão/fisiologia , Infecções por Orthomyxoviridae/imunologia , Orthomyxoviridae/imunologia , Proteínas Supressoras da Sinalização de Citocina/metabolismo , Animais , Linfócitos T CD8-Positivos/virologia , Movimento Celular/genética , Citocinas/metabolismo , Imunidade/genética , Memória Imunológica/genética , Imunofenotipagem , Pulmão/virologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Proteínas Supressoras da Sinalização de Citocina/genética
18.
Nat Commun ; 15(1): 2619, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521764

RESUMO

Immunity to infectious diseases is predominantly studied by measuring immune responses towards a single pathogen, although co-infections are common. In-depth mechanisms on how co-infections impact anti-viral immunity are lacking, but are highly relevant to treatment and prevention. We established a mouse model of co-infection with unrelated viruses, influenza A (IAV) and Semliki Forest virus (SFV), causing disease in different organ systems. SFV infection eight days before IAV infection results in prolonged IAV replication, elevated cytokine/chemokine levels and exacerbated lung pathology. This is associated with impaired lung IAV-specific CD8+ T cell responses, stemming from suboptimal CD8+ T cell activation and proliferation in draining lymph nodes, and dendritic cell paralysis. Prior SFV infection leads to increased blood brain barrier permeability and presence of IAV RNA in brain, associated with increased trafficking of IAV-specific CD8+ T cells and establishment of long-term tissue-resident memory. Relative to lung IAV-specific CD8+ T cells, brain memory IAV-specific CD8+ T cells have increased TCR repertoire diversity within immunodominant DbNP366+CD8+ and DbPA224+CD8+ responses, featuring suboptimal TCR clonotypes. Overall, our study demonstrates that infection with an unrelated neurotropic virus perturbs IAV-specific immune responses and exacerbates IAV disease. Our work provides key insights into therapy and vaccine regimens directed against unrelated pathogens.


Assuntos
Coinfecção , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Vírus , Camundongos , Animais , Humanos , Influenza Humana/patologia , Linfócitos T CD8-Positivos , Coinfecção/patologia , Receptores de Antígenos de Linfócitos T , Pulmão/patologia
19.
Cell Rep Med ; 4(4): 101017, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37030296

RESUMO

Immunocompromised hematology patients are vulnerable to severe COVID-19 and respond poorly to vaccination. Relative deficits in immunity are, however, unclear, especially after 3 vaccine doses. We evaluated immune responses in hematology patients across three COVID-19 vaccination doses. Seropositivity was low after a first dose of BNT162b2 and ChAdOx1 (∼26%), increased to 59%-75% after a second dose, and increased to 85% after a third dose. While prototypical antibody-secreting cells (ASCs) and T follicular helper (Tfh) cell responses were elicited in healthy participants, hematology patients showed prolonged ASCs and skewed Tfh2/17 responses. Importantly, vaccine-induced expansions of spike-specific and peptide-HLA tetramer-specific CD4+/CD8+ T cells, together with their T cell receptor (TCR) repertoires, were robust in hematology patients, irrespective of B cell numbers, and comparable to healthy participants. Vaccinated patients with breakthrough infections developed higher antibody responses, while T cell responses were comparable to healthy groups. COVID-19 vaccination induces robust T cell immunity in hematology patients of varying diseases and treatments irrespective of B cell numbers and antibody response.


Assuntos
COVID-19 , Neoplasias Hematológicas , Humanos , Receptores de Antígenos de Linfócitos T alfa-beta , Vacinas contra COVID-19 , SARS-CoV-2 , Vacina BNT162 , Linfócitos T CD8-Positivos
20.
Front Immunol ; 13: 812393, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35603215

RESUMO

CD8+ T cells are a pivotal part of the immune response to viruses, playing a key role in disease outcome and providing long-lasting immunity to conserved pathogen epitopes. Understanding CD8+ T cell immunity in humans is complex due to CD8+ T cell restriction by highly polymorphic Human Leukocyte Antigen (HLA) proteins, requiring T cell epitopes to be defined for different HLA allotypes across different ethnicities. Here we evaluate strategies that have been developed to facilitate epitope identification and study immunogenic T cell responses. We describe an immunopeptidomics approach to sequence HLA-bound peptides presented on virus-infected cells by liquid chromatography with tandem mass spectrometry (LC-MS/MS). Using antigen presenting cell lines that stably express the HLA alleles characteristic of Indigenous Australians, this approach has been successfully used to comprehensively identify influenza-specific CD8+ T cell epitopes restricted by HLA allotypes predominant in Indigenous Australians, including HLA-A*24:02 and HLA-A*11:01. This is an essential step in ensuring high vaccine coverage and efficacy in Indigenous populations globally, known to be at high risk from influenza disease and other respiratory infections.


Assuntos
Vacinas contra Influenza , Influenza Humana , Austrália , Linfócitos T CD8-Positivos , Cromatografia Líquida , Epitopos de Linfócito T , Antígenos HLA , Antígenos de Histocompatibilidade Classe I , Antígenos de Histocompatibilidade Classe II , Humanos , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA