RESUMO
PURPOSE: The neutralizing peptibody trebananib prevents angiopoietin-1 and angiopoietin-2 from binding with Tie2 receptors, inhibiting angiogenesis and proliferation. Trebananib was combined with paclitaxel±trastuzumab in the I-SPY2 breast cancer trial. PATIENTS AND METHODS: I-SPY2, a phase II neoadjuvant trial, adaptively randomizes patients with high-risk, early-stage breast cancer to one of several experimental therapies or control based on receptor subtypes as defined by hormone receptor (HR) and HER2 status and MammaPrint risk (MP1, MP2). The primary endpoint is pathologic complete response (pCR). A therapy "graduates" if/when it achieves 85% Bayesian probability of success in a phase III trial within a given subtype. Patients received weekly paclitaxel (plus trastuzumab if HER2-positive) without (control) or with weekly intravenous trebananib, followed by doxorubicin/cyclophosphamide and surgery. Pathway-specific biomarkers were assessed for response prediction. RESULTS: There were 134 participants randomized to trebananib and 133 to control. Although trebananib did not graduate in any signature [phase III probabilities: Hazard ratio (HR)-negative (78%), HR-negative/HER2-positive (74%), HR-negative/HER2-negative (77%), and MP2 (79%)], it demonstrated high probability of superior pCR rates over control (92%-99%) among these subtypes. Trebananib improved 3-year event-free survival (HR 0.67), with no significant increase in adverse events. Activation levels of the Tie2 receptor and downstream signaling partners predicted trebananib response in HER2-positive disease; high expression of a CD8 T-cell gene signature predicted response in HR-negative/HER2-negative disease. CONCLUSIONS: The angiopoietin (Ang)/Tie2 axis inhibitor trebananib combined with standard neoadjuvant therapy increased estimated pCR rates across HR-negative and MP2 subtypes, with probabilities of superiority >90%. Further study of Ang/Tie2 receptor axis inhibitors in validated, biomarker-predicted sensitive subtypes is warranted.
Assuntos
Neoplasias da Mama , Proteínas Recombinantes de Fusão , Feminino , Humanos , Protocolos de Quimioterapia Combinada Antineoplásica/efeitos adversos , Teorema de Bayes , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Neoplasias da Mama/patologia , Terapia Neoadjuvante , Paclitaxel/efeitos adversos , Receptor ErbB-2/metabolismo , Receptor TIE-2 , Trastuzumab/efeitos adversosRESUMO
HSP90 inhibitors destabilize oncoproteins associated with cell cycle, angiogenesis, RAS-MAPK activity, histone modification, kinases and growth factors. We evaluated the HSP90-inhibitor ganetespib in combination with standard chemotherapy in patients with high-risk early-stage breast cancer. I-SPY2 is a multicenter, phase II adaptively randomized neoadjuvant (NAC) clinical trial enrolling patients with stage II-III breast cancer with tumors 2.5 cm or larger on the basis of hormone receptors (HR), HER2 and Mammaprint status. Multiple novel investigational agents plus standard chemotherapy are evaluated in parallel for the primary endpoint of pathologic complete response (pCR). Patients with HER2-negative breast cancer were eligible for randomization to ganetespib from October 2014 to October 2015. Of 233 women included in the final analysis, 140 were randomized to the standard NAC control; 93 were randomized to receive 150 mg/m2 ganetespib every 3 weeks with weekly paclitaxel over 12 weeks, followed by AC. Arms were balanced for hormone receptor status (51-52% HR-positive). Ganetespib did not graduate in any of the biomarker signatures studied before reaching maximum enrollment. Final estimated pCR rates were 26% vs. 18% HER2-negative, 38% vs. 22% HR-negative/HER2-negative, and 15% vs. 14% HR-positive/HER2-negative for ganetespib vs control, respectively. The predicted probability of success in phase 3 testing was 47% HER2-negative, 72% HR-negative/HER2-negative, and 19% HR-positive/HER2-negative. Ganetespib added to standard therapy is unlikely to yield substantially higher pCR rates in HER2-negative breast cancer compared to standard NAC, and neither HSP90 pathway nor replicative stress expression markers predicted response. HSP90 inhibitors remain of limited clinical interest in breast cancer, potentially in other clinical settings such as HER2-positive disease or in combination with anti-PD1 neoadjuvant chemotherapy in triple negative breast cancer.Trial registration: www.clinicaltrials.gov/ct2/show/NCT01042379.
RESUMO
HER2-targeted therapy dramatically improves outcomes in early breast cancer. Here we report the results of two HER2-targeted combinations in the neoadjuvant I-SPY2 phase 2 adaptive platform trial for early breast cancer at high risk of recurrence: ado-trastuzumab emtansine plus pertuzumab (T-DM1/P) and paclitaxel, trastuzumab and pertuzumab (THP). Eligible women have >2.5 cm clinical stage II/III HER2+ breast cancer, adaptively randomized to T-DM1/P, THP, or a common control arm of paclitaxel/trastuzumab (TH), followed by doxorubicin/cyclophosphamide, then surgery. Both T-DM1/P and THP arms 'graduate' in all subtypes: predicted pCR rates are 63%, 72% and 33% for T-DM1/P (n = 52), THP (n = 45) and TH (n = 31) respectively. Toxicity burden is similar between arms. Degree of HER2 pathway signaling and phosphorylation in pretreatment biopsy specimens are associated with response to both T-DM1/P and THP and can further identify highly responsive HER2+ tumors to HER2-directed therapy. This may help identify patients who can safely de-escalate cytotoxic chemotherapy without compromising excellent outcome.
Assuntos
Ado-Trastuzumab Emtansina/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Terapia Neoadjuvante/métodos , Adulto , Idoso , Anticorpos Monoclonais Humanizados/uso terapêutico , Biomarcadores Tumorais , Humanos , Maitansina/uso terapêutico , Pessoa de Meia-Idade , Paclitaxel/uso terapêutico , Receptor ErbB-2/uso terapêutico , Trastuzumab/uso terapêuticoRESUMO
I-SPY2 is an adaptively randomized phase 2 clinical trial evaluating novel agents in combination with standard-of-care paclitaxel followed by doxorubicin and cyclophosphamide in the neoadjuvant treatment of breast cancer. Ganitumab is a monoclonal antibody designed to bind and inhibit function of the type I insulin-like growth factor receptor (IGF-1R). Ganitumab was tested in combination with metformin and paclitaxel (PGM) followed by AC compared to standard-of-care alone. While pathologic complete response (pCR) rates were numerically higher in the PGM treatment arm for hormone receptor-negative, HER2-negative breast cancer (32% versus 21%), this small increase did not meet I-SPY's prespecified threshold for graduation. PGM was associated with increased hyperglycemia and elevated hemoglobin A1c (HbA1c), despite the use of metformin in combination with ganitumab. We evaluated several putative predictive biomarkers of ganitumab response (e.g., IGF-1 ligand score, IGF-1R signature, IGFBP5 expression, baseline HbA1c). None were specific predictors of response to PGM, although several signatures were associated with pCR in both arms. Any further development of anti-IGF-1R therapy will require better control of anti-IGF-1R drug-induced hyperglycemia and the development of more predictive biomarkers.
RESUMO
PURPOSE: The phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin is a key pathway of survival and therapeutic resistance in breast cancer. We evaluated the pan-Akt inhibitor MK-2206 in combination with standard therapy in patients with high-risk early-stage breast cancer. PATIENTS AND METHODS: I-SPY 2 is a multicenter, phase II, open-label, adaptively randomized neoadjuvant platform trial that screens experimental therapies and efficiently identifies potential predictive biomarker signatures. Patients are categorized by human epidermal growth factor receptor 2 (HER2), hormone receptor (HR), and MammaPrint statuses in a 2 × 2 × 2 layout. Patients within each of these 8 biomarker subtypes are adaptively randomly assigned to one of several experimental therapies, including MK-2206, or control. Therapies are evaluated for 10 biomarker signatures, each of which is a combination of these subtypes. The primary end point is pathologic complete response (pCR). A therapy graduates with one or more of these signatures if and when it has an 85% Bayesian predictive probability of success in a hypothetical phase III trial, adjusting for biomarker covariates. Patients in the current report received standard taxane- and anthracycline-based neoadjuvant therapy without (control) or with oral MK-2206 135 mg/week. RESULTS: MK-2206 graduated with 94 patients and 57 concurrently randomly assigned controls in 3 graduation signatures: HR-negative/HER2-positive, HR-negative, and HER2-positive. Respective Bayesian mean covariate-adjusted pCR rates and percentage probability that MK-2206 is superior to control were 0.48:0.29 (97%), 0.62:0.36 (99%), and 0.46:0.26 (94%). In exploratory analyses, MK-2206 evinced a numerical improvement in event-free survival in its graduating signatures. The most significant grade 3-4 toxicity was rash (14% maculopapular, 8.6% acneiform). CONCLUSION: The Akt inhibitor MK-2206 combined with standard neoadjuvant therapy resulted in higher estimated pCR rates in HR-negative and HER2-positive breast cancer. Although MK-2206 is not being further developed at this time, this class of agents remains of clinical interest.