Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Cell ; 157(7): 1565-76, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24949969

RESUMO

Mycobacterium ulcerans, the etiological agent of Buruli ulcer, causes extensive skin lesions, which despite their severity are not accompanied by pain. It was previously thought that this remarkable analgesia is ensured by direct nerve cell destruction. We demonstrate here that M. ulcerans-induced hypoesthesia is instead achieved through a specific neurological pathway triggered by the secreted mycobacterial polyketide mycolactone. We decipher this pathway at the molecular level, showing that mycolactone elicits signaling through type 2 angiotensin II receptors (AT2Rs), leading to potassium-dependent hyperpolarization of neurons. We further validate the physiological relevance of this mechanism with in vivo studies of pain sensitivity in mice infected with M. ulcerans, following the disruption of the identified pathway. Our findings shed new light on molecular mechanisms evolved by natural systems for the induction of very effective analgesia, opening up the prospect of new families of analgesics derived from such systems.


Assuntos
Angiotensinas/metabolismo , Úlcera de Buruli/patologia , Macrolídeos/isolamento & purificação , Mycobacterium ulcerans , Analgésicos/isolamento & purificação , Animais , Úlcera de Buruli/metabolismo , Úlcera de Buruli/microbiologia , Modelos Animais de Doenças , Edema/microbiologia , Humanos , Hipestesia/induzido quimicamente , Macrolídeos/química , Macrolídeos/metabolismo , Camundongos , Neurônios/metabolismo , Canais de Potássio/metabolismo , Prostaglandina-Endoperóxido Sintases/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Transdução de Sinais/efeitos dos fármacos
2.
Pharmacol Res ; 177: 106097, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35085755

RESUMO

Tumor microenvironment plays an important role in melanoma progression. Recent studies reported endothelial cells (EC) are involved in endothelial-to-mesenchymal transition (EndMT). During this phenotypic switch, EC progressively lose their endothelial markers and acquire mesenchymal properties. Depending on their concentration, reactive oxygen species (ROS) can control tumor growth. In EC, ROS are mainly produced by NAPDH oxidases (NOX) such as NOX1 and NOX2. The aim of the present study was to determine the role of these enzymes in EndMT induced by conditioned media (CM) from SK-MEL 28 melanoma cells. The capacity of CM to induce EndMT in HUVEC after 24 h, 48 h or 72 h has been evaluated by following endothelial HUVECs proliferation, migration and their capacity to form capillary on ECMgel®. Furthermore, EndMT was confirmed by western blot and flow cytometry. To determine the role of NOX in EndMT, specific NOX1 and/or NOX2 inhibitors has been tested. TGF-ß2 + /- IL-1ß was used as positive control. ROS production was determined through DCFDA assay. An altered endothelial phenotype was found in CM-treated HUVECs. This phenotypic modification was correlated with a decrease in both capillary formation on ECMgel® and cell proliferation and an increase in cell migration. Exposure to CM for 48 h significantly enhanced intracellular HUVECs ROS production and this increase was prevented by the dual pharmacological inhibition of NOX1 and NOX2. Furthermore, inhibition of NOX1/2 also leads to a partial reversion of CM-induced EndMT. These data confirmed the role of NOX1 and NOX2 in EndMT induced by melanoma cancer cell secretome.


Assuntos
Células Endoteliais , Melanoma , Proliferação de Células , Meios de Cultivo Condicionados/farmacologia , Transição Epitelial-Mesenquimal , Humanos , Espécies Reativas de Oxigênio , Microambiente Tumoral
3.
Am J Physiol Heart Circ Physiol ; 320(1): H211-H220, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33095056

RESUMO

Recent findings from our group demonstrated that females exhibit higher endothelial mineralocorticoid receptor (MR) expression than males, which predisposes them to aldosterone-mediated endothelial dysfunction in the context of metabolic disorders. However, whether the endothelium of female mice presents a higher propensity to MR-mediated dysfunction than that of males in the absence of comorbidities remains unknown. We therefore sought to investigate whether increasing aldosterone production endogenously with sodium restriction impairs endothelial function in otherwise healthy female mice. We fed male and female Balb/C mice a normal (0.4% NaCl; NSD) or sodium-restricted diet (0.05% NaCl; SRD) for 4 wk. Females exhibited higher baseline endothelial function (relaxation to acetylcholine) and lower vascular contractility (constriction to phenylephrine, serotonin, and KCl). However, SRD impaired endothelial-dependent relaxation and increased vascular contractility in female mice, effectively ablating the baseline sex difference. Female sex also increased baseline adrenal CYP11B2 expression; however, SRD significantly enhanced CYP11B2 expression in male and female mice and ablated the sex difference. Nitric oxide synthase (NOS) inhibition with Nω-nitro-l-arginine methyl ester hydrochloride eliminated both sex as well as diet-induced differences in endothelial dysfunction. In accordance, females demonstrated higher vascular endothelial NOS expression at baseline, which SRD significantly decreased. In addition, SRD diminished vascular NOX4 expression in female mice only. MR blockade with spironolactone-protected female mice from decreases in endothelial-dependent relaxation but not increases in vascular contractility. Utilizing sodium restriction as a method to increase plasma aldosterone levels in healthy female mice, we demonstrated that female mice are more susceptible to vascular damage via MR activation in the vascular endothelium only.NEW & NOTEWORTHY Female sex confers improved endothelial relaxation and vascular constriction responses in female Balb/C mice compared with males under baseline conditions. Sodium restriction impairs endothelial function, which is nitric oxide dependent, and increases vascular contractility in association with reduced vascular endothelial nitric oxide synthase and NOX4 expression in female mice ablating the baseline sex difference. Mineralocorticoid receptor antagonism ablates sodium restriction-induced endothelial dysfunction, but not increased vascular contractility, in female mice.


Assuntos
Aldosterona/sangue , Dieta Hipossódica , Endotélio Vascular/metabolismo , Óxido Nítrico/metabolismo , Receptores de Mineralocorticoides/metabolismo , Vasoconstrição , Vasodilatação , Glândulas Suprarrenais/enzimologia , Animais , Citocromo P-450 CYP11B2/metabolismo , Endotélio Vascular/fisiopatologia , Feminino , Masculino , Camundongos Endogâmicos BALB C , NADPH Oxidase 4/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Receptor Tipo 1 de Angiotensina/metabolismo , Fatores Sexuais , Transdução de Sinais , Regulação para Cima
4.
Pharmacol Res ; 126: 31-53, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28223185

RESUMO

Melanoma originated from melanocytes is the most aggressive type of skin cancer. Despite considerable progresses in clinical treatment with the discovery of BRAF or MEK inhibitors and monoclonal antibodies, the durability of response to treatment is often limited to the development of acquired resistance and systemic toxicity. The limited success of conventional treatment highlights the importance of understanding the role of melanoma tumor microenvironment in tumor developement and drug resistance. Nanoparticles represent a promising strategy for the development of new cancer treatments able to improve the bioavailability of drugs and increase their penetration by targeting specifically tumors cells and/or tumor environment. In this review, we will discuss the main influence of tumor microenvironment in melanoma growth and treatment outcome. Furthermore, third generation loaded nanotechnologies represent an exciting tool for detection, treatment, and escape from possible mechanism of resistance mediated by tumor microenvironment, and will be highlighted in this review.


Assuntos
Melanoma/tratamento farmacológico , Nanopartículas/administração & dosagem , Neoplasias Cutâneas/tratamento farmacológico , Microambiente Tumoral/efeitos dos fármacos , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Sistemas de Liberação de Medicamentos/métodos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Humanos , Nanomedicina/métodos
5.
Molecules ; 22(4)2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28417947

RESUMO

Ethoxidine, a benzo[c]phenanthridine derivative, has been identified as a potent inhibitor of topoisomerase I in cancer cell lines. Our group has reported paradoxical properties of ethoxidine in cellular processes leading to angiogenesis on endothelial cells. Because low concentration ethoxidine is able to favor angiogenesis, the present study aimed to investigate the ability of 10-9 M ethoxidine to modulate neovascularization in a model of mouse hindlimb ischemia. After inducing unilateral hindlimb ischemia, mice were treated for 21 days with glucose 5% or with ethoxidine, to reach plasma concentrations equivalent to 10-9 M. Laser Doppler analysis showed that recovery of blood flow was 1.5 fold higher in ethoxidine-treated mice in comparison with control mice. Furthermore, CD31 staining and angiographic studies confirmed an increase of vascular density in ethoxidine-treated mice. This ethoxidine-induced recovery was associated with an increase of NO production through an enhancement of eNOS phosphorylation on its activator site in skeletal muscle from ischemic hindlimb. Moreover, real-time RT-PCR and western blots have highlighted that ethoxidine has pro-angiogenic properties by inducing a significant enhancement in vegf transcripts and VEGF expression, respectively. These findings suggest that ethoxidine could contribute to favor neovascularization after an ischemic injury by promoting the NO pathway and VEGF expression.


Assuntos
Indutores da Angiogênese/farmacologia , Membro Posterior/irrigação sanguínea , Membro Posterior/efeitos dos fármacos , Isquemia/metabolismo , Óxido Nítrico/metabolismo , Fenantridinas/farmacologia , Indutores da Angiogênese/química , Animais , Pressão Sanguínea/efeitos dos fármacos , Peso Corporal/efeitos dos fármacos , Modelos Animais de Doenças , Isquemia/tratamento farmacológico , Masculino , Camundongos , Estrutura Molecular , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Neovascularização Fisiológica/efeitos dos fármacos , Óxido Nítrico Sintase Tipo III/metabolismo , Fenantridinas/química , Transdução de Sinais/efeitos dos fármacos , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Cardiovasc Diabetol ; 13: 40, 2014 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-24511993

RESUMO

BACKGROUND: We examined the effect of chronic administration of angiotensin IV (AngIV) on the vascular alterations induced by type 1 diabetes in mice. METHODS: Diabetes was induced in adult Swiss mice with a single injection of streptozotocin (STZ). Mice were treated subcutaneously with AngIV (1.4 mg/kg/day) either immediately following diabetes induction (preventive treatment), or treated with AngIV (0.01 to 1.4 mg/kg), alone or with the AT4 receptor antagonist Divalinal or the AT2 receptor antagonist PD123319, for two weeks after 4 weeks of diabetes duration (rescue treatment). Acetylcholine-induced, endothelium-dependent relaxation (EDR) was measured in isolated aortic rings preparations. Histomorphometric measurements of the media thickness were obtained, and nitric oxide (NO) and superoxide anion production were measured by electron paramagnetic resonance in aorta and mesenteric arteries. The effect of diabetes on mesenteric vascular alterations was also examined in genetically modified mice lacking the AT2 receptor. RESULTS: Induction of diabetes with STZ was associated with a progressive decrease of EDR and an increase of the aortic and mesenteric media thickness already significant after 4 weeks and peaking at week 6. Immediate treatment with AngIV fully prevented the diabetes-induced endothelial dysfunction. Rescue treatment with AngIV implemented after 4 weeks of diabetes dose-dependently restored a normal endothelial function at week 6. AngIV blunted the thickening of the aortic and mesenteric media, and reversed the diabetes-induced changes in NO and O2•- production by the vessels. The protective effect of AngIV on endothelial function was completely blunted by cotreatment with Divalinal, but not with PD123319. In contrast, both the pharmacological blockade and genetic deletion of the AT2 receptor reversed the diabetes-induced morphologic and endothelial alteration caused by diabetes. CONCLUSIONS: The results suggest an opposite contribution of AT2 and AT4 receptors to the vascular alterations caused by streptozotocin-induced diabetes in mice, since chronic stimulation of AT4 by AngIV and inhibition of AT2 similarly reverse diabetes-induced endothelial dysfunction and hypertrophic remodeling, and increase NO bioavailability.


Assuntos
Bloqueadores do Receptor Tipo 2 de Angiotensina II/uso terapêutico , Angiotensina II/análogos & derivados , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/fisiopatologia , Receptor Tipo 2 de Angiotensina/fisiologia , Receptores de Angiotensina/fisiologia , Angiotensina II/farmacologia , Angiotensina II/uso terapêutico , Bloqueadores do Receptor Tipo 2 de Angiotensina II/farmacologia , Animais , Masculino , Camundongos , Camundongos Knockout , Técnicas de Cultura de Órgãos , Receptor Tipo 2 de Angiotensina/agonistas , Receptores de Angiotensina/agonistas , Resultado do Tratamento , Vasodilatação/efeitos dos fármacos , Vasodilatação/fisiologia
7.
J Biophotonics ; 17(3): e202300439, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38302735

RESUMO

Due to morphological characteristics, metastatic melanoma is a cancer for which vascularization is not a diagnostic criterion. Laser speckle contrast imaging (LSCI) and contrast enhanced ultrasound (CEUS) are two imaging techniques that will be explored in this study, which aims to confirm these two techniques for monitoring tumor vascularization. B16F10 cells were xenografted to C57BL/6 mice treated with anti-PD1 or 0.9% NaCl. Tumor volume was measured daily while CEUS and LSCI were performed weekly. LSCI and CEUS analyses showed a decrease in tumor perfusion in both groups of mice. Although both CEUS and LSCI are useful for measuring tumor volume, LSCI appears to be more robust and effective for monitoring tumor microcirculation. Non-invasive investigations are needed to better predict tumor vascularization: CEUS and LSCI have a good applicability in a mice model.


Assuntos
Melanoma , Camundongos , Animais , Velocidade do Fluxo Sanguíneo , Melanoma/diagnóstico por imagem , Camundongos Endogâmicos C57BL , Ultrassonografia , Lasers , Fluxometria por Laser-Doppler , Microcirculação , Fluxo Sanguíneo Regional
8.
Pharmacol Ther ; 242: 108347, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36642389

RESUMO

While new targeted therapies have considerably changed the treatment and prognosis of non-small cell lung cancer (NSCLC), they are frequently unsuccessful due to primary or acquired resistances. Chemoresistance is a complex process that combines cancer cell intrinsic mechanisms including molecular and genetic abnormalities, aberrant interactions within the tumor microenvironment, and the pharmacokinetic characteristics of each molecule. From a pharmacological point of view, two levers could improve the response to treatment: (i) developing tools to predict the response to chemo- and targeted therapies and (ii) gaining a better understanding of the influence of the tumor microenvironment. Both personalized medicine approaches require the identification of relevant experimental models and biomarkers to understand and fight against chemoresistance mechanisms. After describing the main therapies in NSCLC, the scope of this review will be to identify and to discuss relevant in vitro and ex vivo experimental models that are able to mimic tumors. In addition, the interests of these models in the predictive responses to proposed therapies will be discussed. Finally, this review will evaluate the involvement of novel secreted biomarkers such as tumor DNA or micro RNA in predicting responses to anti-tumor therapies.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , MicroRNAs , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Biomarcadores Tumorais/genética , Prognóstico , Microambiente Tumoral
9.
Angiogenesis ; 15(4): 745-60, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22829064

RESUMO

Epidemiological studies report that exposure to pesticides like chlordecone and lindane increases risk of cancer. They may act as endocrine disruptors via the activation of estrogen receptor α (ERα). Carcinogenesis involved angiogenesis and no available data regarding these organochlorines have been reported. The present study aimed at investigating the effects of lindane and chlordecone on cellular processes leading to angiogenesis through an involvement of ERα. Angiogenesis has been analyzed both in vitro, on human endothelial cells, and in vivo by quantifying neovascularization with the use of ECMgel® plug in mice. Both pesticides increased endothelial cell proliferation, migration and MMP2 activity. These toxics potentiated cell adhesion by enhancing FAK phosphorylation and stress fibers. The two organochlorines increased nitric oxide production via an enhancement of eNOS activity without modification of oxidative stress. Evidence has been provided that the two toxins increased in vivo neovascularization. Most interestingly, all the above processes were either partially or completely prevented after silencing of ERα. Altogether, these data highlight that organochlorines modulate cellular angiogenic processes through activation of ERα. This study further reinforces the harmful effects of these pesticides in carcinogenesis, particularly in the modulation of angiogenesis, a critical step in tumor promotion, through ERα.


Assuntos
Receptor alfa de Estrogênio/efeitos dos fármacos , Hidrocarbonetos Clorados/farmacologia , Neovascularização Fisiológica/efeitos dos fármacos , Praguicidas/farmacologia , Animais , Células Cultivadas , Espectroscopia de Ressonância de Spin Eletrônica , Citometria de Fluxo , Humanos , Masculino , Camundongos , Microscopia Confocal , Interferência de RNA
10.
Carcinogenesis ; 32(3): 286-95, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21135154

RESUMO

Angiogenesis, a critical step in tumorigenesis, is defined by different processes leading to neovascularization. Topoisomerase I (Top I) is the target for some of the most successful anticancer drugs that decrease tumor cell proliferation. Ethoxidine, a benzo[c]phenanthridines derivative, camptothecin analogue, has been identified as a potent inhibitor of Top I in various cancer cell lines. This study was aimed to investigate the impact of ethoxidine on angiogenesis and cellular processes including migration, proliferation and adhesion since these processes play an important role in tumor progression. Ethoxidine was incubated for 24 h at low (10⁻9 M) and high (10⁻5 M) concentrations on two types of human endothelial cells: EaHy.926 and human umbilical endothelial cells. Vascular endothelial growth factor (VEGF, 20 ng/ml) was used as a positive control. Ethoxidine at low concentration increased cell proliferation and migration that was associated with enhanced metalloproteinase 2 expression and activity, whereas high concentration of ethoxidine inhibited all of these effects. The two concentrations of ethoxidine did not affect endothelial cell adhesion. Low concentration of ethoxidine increased VEGF expression and endothelial nitric oxide (NO) synthase expression, NO and superoxide anion productions, whereas high concentration of ethoxidine did not induce any effect. Taken together, the present results highlight paradoxical effects of ethoxidine on angiogenesis depending on the concentration used. This study underscores that in addition to its anti-proliferative properties, ethoxidine may affect the generation of vascular network in tumorigenesis.


Assuntos
Endotélio Vascular/efeitos dos fármacos , Neovascularização Fisiológica , Fenantridinas/farmacologia , Inibidores da Topoisomerase I/farmacologia , Apoptose/efeitos dos fármacos , Western Blotting , Adesão Celular/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Espectroscopia de Ressonância de Spin Eletrônica , Endotélio Vascular/metabolismo , Citometria de Fluxo , Humanos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/genética , Óxido Nítrico Sintase Tipo III/metabolismo , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Superóxidos/metabolismo , Veias Umbilicais/citologia , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
11.
Pharmacol Ther ; 223: 107805, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33465401

RESUMO

Tumor cell vasculogenic mimicry (VM), also dubbed vascular mimicry, describes the plasticity of aggressive cancer cells forming de novo vascular networks and is associated with the malignant phenotype and poor clinical outcome. VM is described in a plethora of tumors, including carcinomas, sarcomas, glioblastomas, astrocytomas and melanomas. The presence of VM is associated with a high tumor grade, short survival, invasion and metastasis. A variety of molecular mechanisms and signal pathways participates in VM induction and formation. Due to VM's contribution on tumor progression, more VM-related strategies are being utilized for anticancer treatment. After describing the main features of VM, this review will outline the importance of the tumor microenvironment during this process, and highlight the predominant molecular targets and signaling pathways involved. These data will make it possible to discuss the importance of VM-associated mediators in antitumor therapy and how it could allow to better understand the resistance to anticancer therapy.


Assuntos
Carcinogênese , Neovascularização Patológica , Carcinogênese/efeitos dos fármacos , Carcinogênese/patologia , Humanos , Neovascularização Patológica/tratamento farmacológico
12.
Cancers (Basel) ; 13(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922267

RESUMO

Despite significant advances in melanoma therapy, low response rates and multidrug resistance (MDR) have been described, reducing the anticancer efficacy of the administered molecules. Among the causes to explain these resistances, the decreased intratumoral pH is known to potentiate MDR and to reduce the sensitivity to anticancer molecules. Nanomedicines have been widely exploited as the carriers of MDR reversing molecules. Lipid nanocapsules (LNC) are nanoparticles that have already demonstrated their ability to improve cancer treatment. Here, LNC were modified with novel copolymers that combine N-vinylpyrrolidone (NVP) to impart stealth properties and vinyl imidazole (Vim), providing pH-responsive ability to address classical chemoresistance by improving tumor cell entry. These copolymers could be post-inserted at the LNC surface, leading to the property of going from neutral charge under physiological pH to positive charge under acidic conditions. LNC modified with polymer P5 (C18H37-P(NVP21-co-Vim15)) showed in vitro pH-responsive properties characterized by an enhanced cellular uptake under acidic conditions. Moreover, P5 surface modification led to an increased biological effect by protecting the nanocarrier from opsonization by complement activation. These data suggest that pH-sensitive LNC responds to what is expected from a promising nanocarrier to target metastatic melanoma.

13.
Int J Pharm ; 593: 120111, 2021 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-33246045

RESUMO

Metastatic melanoma is a malignant tumor with a poor prognosis. Recent new therapeutics improved the survival of patients at a metastatic stage. However, the low response rate to immunotherapy, explained in part by resistance to apoptosis, needs to develop new strategies. The ferrocifen family represents promising bioorganometallic molecules for melanoma treatment since they show potent anticancer properties. The aim of this study is (i) to evaluate the benefits of a strategy involving encapsulated p722 in lipid nanocapsules (LNC) in B16F10 melanoma mice models and (ii) to compare the beneficial effects with an existing therapy such as anti-CTLA4 mAb. Interestingly, LNC-p722 induces a significant decrease of melanoma cell viability. In vivo data shows a significant improvement in the survival rate and a slower tumor growth with p722-loaded LNC in comparison with anti-CTLA4 mAb. Western blots confirm that LNC-p722 potentiates intrinsic apoptotic pathway. Treatment with LNC-p722 significantly activates CD8+ T lymphocytes compared to treatment with anti-CTLA4 mAb. This study uncovers a new therapeutic strategy with encapsulated p722 to prevent B16F10 melanoma growth and to improve survival of treated mice.


Assuntos
Melanoma , Nanocápsulas , Animais , Apoptose , Linfócitos T CD8-Positivos , Compostos Ferrosos , Humanos , Lipídeos , Melanoma/tratamento farmacológico , Camundongos , Nanocápsulas/uso terapêutico , Linfócitos T
14.
Int J Cancer ; 127(10): 2279-91, 2010 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-20143398

RESUMO

Despite significant expression level in cancer cells, the role of the angiotensin II Type 2 receptor (AT2R) in cancer progression remains poorly understood. We aimed to investigate the involvement of AT2R in tumorigenesis, hypothesizing a role in tumor cell proliferation and/or tumor angiogenesis. Two animal tumor models were used: fibrosarcoma induced by 3-methylcholanthrene (3-MCA) in FVB/N mice invalidated for AT2R (AT2R-KO) and carcinoma LL/2 cells injected in C57BL/6N mice treated with AT2R antagonist PD123,319. Tumor growth was monitored, microvascular density (MVD) evaluated by CD31 staining. Proliferation index of LL/2 and 3-MCA tumor cells was evaluated by expression of Ki-67. Angiogenesis was assessed by aorta ring assay and angiogenic mediators' expression by real-time RT-PCR. Tumor induction by 3-MCA was significantly delayed in AT2R-KO compared to wild-type mice (56 days vs. 28 days). Tumorigenesis following LL/2 cell injection in mice was also significantly reduced by early administration of the antagonist PD123,319. In vitro, inactivation or invalidation of AT2R inhibited proliferation of LL/2 and 3-MCA tumor cells, respectively. Tumor MVD was reduced in mice treated early with PD123,319. Ex vivo experiments revealed a significant decrease in angiogenesis after PD123,319 treatment or in AT2R-KO mice. Finally, we identified vascular endothelial growth factor (VEGF) as a soluble proangiogenic factor produced by LL/2 cells and we showed that in LL/2 and 3-MCA tumor cells, inhibition or deficiency of AT2R was associated with impaired production of proangiogenic factors included VEGF. This study uncovered novel mechanisms by which AT2R would promote tumor development, favoring both malignant cell proliferation and tumor angiogenesis.


Assuntos
Bloqueadores do Receptor Tipo 2 de Angiotensina II , Carcinoma Pulmonar de Lewis/irrigação sanguínea , Carcinoma Pulmonar de Lewis/metabolismo , Fibrossarcoma/irrigação sanguínea , Fibrossarcoma/metabolismo , Receptor Tipo 2 de Angiotensina/deficiência , Animais , Carcinoma Pulmonar de Lewis/genética , Carcinoma Pulmonar de Lewis/patologia , Processos de Crescimento Celular/efeitos dos fármacos , Processos de Crescimento Celular/fisiologia , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Feminino , Fibrossarcoma/patologia , Deleção de Genes , Imidazóis/farmacologia , Metilcolantreno , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/tratamento farmacológico , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Piridinas/farmacologia , Receptor Tipo 2 de Angiotensina/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
15.
Front Cell Dev Biol ; 8: 747, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32923440

RESUMO

Cancer is one of the most important causes of morbidity and mortality worldwide. Tumor cells grow in a complex microenvironment constituted of immune, stromal, and vascular cells that supports growth, angiogenesis, and metastasis. Endothelial cells (ECs) are major components of the vascular microenvironment. These cells have been described for their plasticity and potential to transdifferentiate into mesenchymal cells through a process known as endothelial-to-mesenchymal transition (EndMT). This complex process is controlled by various factors, by which ECs convert into a phenotype characterized by mesenchymal protein expression and motile, contractile morphology. Initially described in normal heart development, EndMT is now identified in several pathologies, and especially in cancer. In this review, we highlight the process of EndMT in the context of cancer and we discuss it as an important adaptive process of the tumor microenvironment that favors tumor growth and dissemination but also resistance to treatment. Thus, we underline targeting of EndMT as a potential therapeutic strategy.

16.
Environ Sci Pollut Res Int ; 27(33): 40953-40962, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30710326

RESUMO

In situ chemical reduction (ISCR) has been identified as a possible way for the remediation of soils contaminated by chlordecone (CLD). Evidences provided by the literature indicate an association between the development of prostate cancer and CLD exposure (Multigner et al. 2010). In a previous in vitro study, we demonstrated that the two main dechlorinated CLD derivatives formed by ISCR, CLD-1Cl, and CLD-3Cl have lower cytotoxicity and proangiogenic properties than CLD itself (Legeay et al. 2017). By contrast, nothing is known on the in vivo proangiogenic effect of these dechlorinated derivatives. Based on in vitro data, the aims of this study were therefore to evaluate the in vivo influence of CLD and three of its dechlorinated metabolites in the control of neovascularization in a mice model of prostate cancer. The proangiogenic effect of CLD and three of its dechlorinated derivatives, CLD-1Cl, CLD-3Cl, and CLD-4Cl, was evaluated on a murine model of human prostate tumor (PC-3) treated, at two exposure levels: 33 µg/kg and 1.7 µg/kg respectively reflecting acute and chronic toxic exposure in human. The results of serum measurements show that, for the same ingested dose, the three metabolite concentrations were significantly lower than that of CLD. Dechlorination of CLD lead therefore to molecules that are biologically absorbed or metabolized, or both, faster than the parent molecule. Prostate tumor growth was lower in the groups treated by the three metabolites compared to the one treated by CLD. The vascularization measured on the tumor sections was inversely proportional to the rate of dechlorination, the treatment with CLD-4Cl showing no difference with control animals treated with only the vehicle oil used for all substances tested. We can therefore conclude that the proangiogenic effect of CLD is significantly decreased following the ISCR-resulting dechlorination. Further investigations are needed to elucidate the molecular mechanisms by which dechlorination of CLD reduces proangiogenic effects in prostate tumor.


Assuntos
Clordecona , Inseticidas , Poluentes do Solo , Animais , Clordecona/análise , Humanos , Inseticidas/análise , Camundongos , Solo , Poluentes do Solo/análise
17.
J Oncol ; 2019: 8361945, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31467544

RESUMO

Cancer cells evolve in a very complex tumor microenvironment, composed of several cell types, among which the endothelial cells are the major actors of the tumor angiogenesis. Today, these cells are also characterized for their plasticity, as endothelial cells have demonstrated their potential to modify their phenotype to differentiate into mesenchymal cells through the endothelial-to-mesenchymal transition (EndoMT). This cellular plasticity is mediated by various stimuli including transforming growth factor-ß (TGF-ß) and is modulated dependently of experimental conditions. Recently, emerging evidences have shown that EndoMT is involved in the development and dissemination of cancer and also in cancer cell to escape from therapeutic treatment. In this review, we summarize current updates on EndoMT and its main induction pathways. In addition, we discuss the role of EndoMT in tumorigenesis, metastasis, and its potential implication in cancer therapy resistance.

18.
J Cancer Res Clin Oncol ; 145(3): 589-597, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30547320

RESUMO

Tumour angiogenesis is defined by an anarchic vasculature and irregularities in alignment of endothelial cells. These structural abnormalities could explain the variability in distribution of nanomedicines in various tumour models. Then, the main goal of this study was to compare and to characterize the tumour vascular structure in different mouse models of melanoma tumours (B16F10 and SK-Mel-28) and in human melanomas from different patients. Tumours were obtained by subcutaneous injection of 106 B16F10 and 3.106 SK-Mel-28 melanoma cells in C57BL/6 and nude mice, respectively. Tumour growth was evaluated weekly, while vasculature was analysed through fluorescent labelling via CD31 and desmin. Significant differences in tumour growth and mice survival were evidenced between the two melanoma models. A fast evolution of tumours was observed for B16F10 melanoma, reaching a tumour size of 100 mm3 in 7 days compared to SK-Mel-28 which needed 21 days to reach the same volumes. Important differences in vascularization were exposed between the melanoma models, characterized by a significant enhancement of vascular density and a significant lumen size for mice melanoma models compared to human. Immunostaining revealed irregularities in endothelium structure for both melanoma models, but structural differences of vasculature were observed, characterized by a stronger expression of desmin in SK-Mel-28 tumours. While human melanoma mainly develops capillaries, structural irregularities are also observed on the samples of this tumour model. Our study revealed an impact of cell type and tumour progression on the structural vasculature of melanoma, which could impact the distribution of drugs in the tumour environment.


Assuntos
Melanoma Experimental/patologia , Melanoma/patologia , Neovascularização Patológica/patologia , Animais , Humanos , Camundongos
19.
Eur J Pharmacol ; 825: 92-98, 2018 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-29477656

RESUMO

N,N-diethyl-m-toluamide (DEET) induces favorable repellency against insects by acting on the sensory nervous system. According to emerging literature reports, DEET side effects in humans involve new molecular targets including the cholinergic system, acetylcholinesterase (AChE), muscarinic M1 and M3 receptor and the participation of the second messenger nitric oxide (NO). Most of these molecular events targeted by DEET have previously been characterized in insects while they have been considered as marginal compared to classical repellent properties. Despite these uncommon actions in insects, there is no consensus on the effects in human. Based on these data, this review provides new insights on side effects in human and more largely in mammals by identifying the unusual properties of DEET in insects, which seem to be correlated with adverse effects in mammals. These data will be very helpful to understand better the toxicological effects observed in order to protect non-target organisms from the toxicity.


Assuntos
DEET/efeitos adversos , DEET/farmacologia , Repelentes de Insetos/efeitos adversos , Repelentes de Insetos/farmacologia , Insetos/efeitos dos fármacos , Animais , Humanos
20.
Environ Sci Pollut Res Int ; 25(15): 14313-14323, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28210952

RESUMO

Chlordecone (CLD) is a chlorinated hydrocarbon insecticide, now classified as a persistent organic pollutant. Several studies have previously reported that chronic exposure to CLD leads to hepatotoxicity, neurotoxicity, raises early child development and pregnancy complications, and increases the risk of liver and prostate cancer. In situ chemical reduction (ISCR) has been identified as a possible way for the remediation of soils contaminated by CLD. In the present study, the objectives were (i) to evaluate the genotoxicity and the mutagenicity of two CLD metabolites formed by ISCR, CLD-5a-hydro, or CLD-5-hydro (5a- or 5- according to CAS nomenclature; CLD-1Cl) and tri-hydroCLD (CLD-3Cl), and (ii) to explore the angiogenic properties of these molecules. Mutagenicity and genotoxicity were investigated using the Ames's technique on Salmonella typhimurium and the in vitro micronucleus micromethod with TK6 human lymphoblastoid cells. The proangiogenic properties were evaluated on the in vitro capillary network formation of human primary endothelial cells. Like CLD, the dechlorinated derivatives of CLD studied were devoid of genotoxic and mutagenic activity. In the assay targeting angiogenic properties, significantly lower microvessel lengths formed by endothelial cells were observed for the CLD-3Cl-treated cells compared to the CLD-treated cells for two of the three tested concentrations. These results suggest that dechlorinated CLD derivatives are devoid of mutagenicity and genotoxicity and have lower proangiogenic properties than CLD.


Assuntos
Clordecona/análise , Dano ao DNA/genética , Inseticidas/análise , Mutagênicos/toxicidade , Poluentes do Solo/análise , Clordecona/química , Humanos , Inseticidas/química , Mutagênese , Testes de Mutagenicidade , Poluentes do Solo/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA