Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 110
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Antonie Van Leeuwenhoek ; 117(1): 69, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38647727

RESUMO

A novel bacterial symbiont, strain A19T, was previously isolated from a root-nodule of Aeschynomene indica and assigned to a new lineage in the photosynthetic clade of the genus Bradyrhizobium. Here data are presented for the detailed genomic and taxonomic analyses of novel strain A19T. Emphasis is placed on the analysis of genes of practical or ecological significance (photosynthesis, nitrous oxide reductase and nitrogen fixation genes). Phylogenomic analysis of whole genome sequences as well as 50 single-copy core gene sequences placed A19T in a highly supported lineage distinct from described Bradyrhizobium species with B. oligotrophicum as the closest relative. The digital DNA-DNA hybridization and average nucleotide identity values for A19T in pair-wise comparisons with close relatives were far lower than the respective threshold values of 70% and ~ 96% for definition of species boundaries. The complete genome of A19T consists of a single 8.44 Mbp chromosome and contains a photosynthesis gene cluster, nitrogen-fixation genes and genes encoding a complete denitrifying enzyme system including nitrous oxide reductase implicated in the reduction of N2O, a potent greenhouse gas, to inert dinitrogen. Nodulation and type III secretion system genes, needed for nodulation by most rhizobia, were not detected. Data for multiple phenotypic tests complemented the sequence-based analyses. Strain A19T elicits nitrogen-fixing nodules on stems and roots of A. indica plants but not on soybeans or Macroptilium atropurpureum. Based on the data presented, a new species named Bradyrhizobium ontarionense sp. nov. is proposed with strain A19T (= LMG 32638T = HAMBI 3761T) as the type strain.


Assuntos
Bradyrhizobium , Genoma Bacteriano , Fixação de Nitrogênio , Oxirredutases , Fotossíntese , Filogenia , Simbiose , Bradyrhizobium/genética , Bradyrhizobium/classificação , Bradyrhizobium/metabolismo , Bradyrhizobium/isolamento & purificação , Oxirredutases/genética , Oxirredutases/metabolismo , DNA Bacteriano/genética , RNA Ribossômico 16S/genética , Nódulos Radiculares de Plantas/microbiologia
2.
Int J Mol Sci ; 24(24)2023 Dec 18.
Artigo em Inglês | MEDLINE | ID: mdl-38139451

RESUMO

Nitrogen (N), the most important macro-nutrient for plant growth and development, is a key factor that determines crop yield. Yet its excessive applications pollute the environment and are expensive. Hence, studying nitrogen use efficiency (NUE) in crops is fundamental for sustainable agriculture. Here, an association panel consisting of 123 flax accessions was evaluated for 21 NUE-related traits at the seedling stage under optimum N (N+) and N deficiency (N-) treatments to dissect the genetic architecture of NUE-related traits using a multi-omics approach integrating genome-wide association studies (GWAS), transcriptome analysis and genomic selection (GS). Root traits exhibited significant and positive correlations with NUE under N- conditions (r = 0.33 to 0.43, p < 0.05). A total of 359 QTLs were identified, accounting for 0.11% to 23.1% of the phenotypic variation in NUE-related traits. Transcriptomic analysis identified 1034 differentially expressed genes (DEGs) under contrasting N conditions. DEGs involved in N metabolism, root development, amino acid transport and catabolism and others, were found near the QTLs. GS models to predict NUE stress tolerance index (NUE_STI) trait were tested using a random genome-wide SNP dataset and a GWAS-derived QTLs dataset. The latter produced superior prediction accuracy (r = 0.62 to 0.79) compared to the genome-wide SNP marker dataset (r = 0.11) for NUE_STI. Our results provide insights into the QTL architecture of NUE-related traits, identify candidate genes for further studies, and propose genomic breeding tools to achieve superior NUE in flax under low N input.


Assuntos
Linho , Nitrogênio , Linho/genética , Linho/metabolismo , Estudo de Associação Genômica Ampla , Genômica , Nitrogênio/metabolismo , Melhoramento Vegetal , RNA-Seq , Plântula/metabolismo
3.
Int J Mol Sci ; 24(9)2023 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-37176097

RESUMO

Wheat was one of the crops domesticated in the Fertile Crescent region approximately 10,000 years ago. Despite undergoing recent polyploidization, hull-to-free-thresh transition events, and domestication bottlenecks, wheat is now grown in over 130 countries and accounts for a quarter of the world's cereal production. The main reason for its widespread success is its broad genetic diversity that allows it to thrive in different environments. To trace historical selection and hybridization signatures, genome scans were performed on two datasets: approximately 113K SNPs from 921 predominantly bread wheat accessions and approximately 110K SNPs from about 400 wheat accessions representing all ploidy levels. To identify environmental factors associated with the loci, a genome-environment association (GEA) was also performed. The genome scans on both datasets identified a highly differentiated region on chromosome 4A where accessions in the first dataset were dichotomized into a group (n = 691), comprising nearly all cultivars, wild emmer, and most landraces, and a second group (n = 230), dominated by landraces and spelt accessions. The grouping of cultivars is likely linked to their potential ancestor, bread wheat cv. Norin-10. The 4A region harbored important genes involved in adaptations to environmental conditions. The GEA detected loci associated with latitude and temperature. The genetic signatures detected in this study provide insight into the historical selection and hybridization events in the wheat genome that shaped its current genetic structure and facilitated its success in a wide spectrum of environmental conditions. The genome scans and GEA approaches applied in this study can help in screening the germplasm housed in gene banks for breeding, and for conservation purposes.


Assuntos
Genoma de Planta , Triticum , Triticum/genética , Melhoramento Vegetal , Ploidias , Aclimatação , Polimorfismo de Nucleotídeo Único
4.
Int J Mol Sci ; 23(9)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35563347

RESUMO

Powdery mildew (PM), caused by the fungus Oidium lini in flax, can cause defoliation and reduce seed yield and quality. To date, one major dominant gene (Pm1) and three quantitative trait loci (QTL) on chromosomes 1, 7 and 9 have been reported for PM resistance. To fully dissect the genetic architecture of PM resistance and identify QTL, a diverse flax core collection of 372 accessions augmented with an additional 75 breeding lines were sequenced, and PM resistance was evaluated in the field for eight years (2010-2017) in Morden, Manitoba, Canada. Genome-wide association studies (GWAS) were performed using two single-locus and seven multi-locus statistical models with 247,160 single nucleotide polymorphisms (SNPs) and the phenotypes of the 447 individuals for each year separately as well as the means over years. A total of 349 quantitative trait nucleotides (QTNs) were identified, of which 44 large-effect QTNs (R2 = 10-30%) were highly stable over years. The total number of favourable alleles per accession was significantly correlated with PM resistance (r = 0.74), and genomic selection (GS) models using all identified QTNs generated significantly higher predictive ability (r = 0.93) than those constructed using the 247,160 genome-wide random SNP (r = 0.69), validating the overall reliability of the QTNs and showing the additivity of PM resistance in flax. The QTNs were clustered on the distal ends of all 15 chromosomes, especially on chromosome 5 (0.4-5.6 Mb and 9.4-16.9 Mb) and 13 (4.7-5.2 Mb). To identify candidate genes, a dataset of 3230 SNPs located in resistance gene analogues (RGAs) was used as input for GWAS, from which an additional 39 RGA-specific QTNs were identified. Overall, 269 QTN loci harboured 445 RGAs within the 200 Kb regions spanning the QTNs, including 45 QTNs located within the RGAs. These RGAs supported by significant QTN/SNP allele effects were mostly nucleotide binding site and leucine-rich repeat receptors (NLRs) belonging to either coiled-coil (CC) NLR (CNL) or toll interleukin-1 (TIR) NLR (TNL), receptor-like kinase (RLK), receptor-like protein kinase (RLP), transmembrane-coiled-coil (TM-CC), WRKY, and mildew locus O (MLO) genes. These results constitute an important genomic tool for resistance breeding and gene cloning for PM in flax.


Assuntos
Linho , Resistência à Doença/genética , Erysiphe , Linho/genética , Genes de Plantas , Estudo de Associação Genômica Ampla/métodos , Genômica , Melhoramento Vegetal/métodos , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Reprodutibilidade dos Testes
5.
Int J Mol Sci ; 23(14)2022 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-35886986

RESUMO

Common bean (Phaseolus vulgaris L.) is a food crop that is an important source of dietary proteins and carbohydrates. Marsh spot is a physiological disorder that diminishes seed quality in beans. Prior research suggested that this disease is likely caused by manganese (Mn) deficiency during seed development and that marsh spot resistance is controlled by at least four genes. In this study, genetic mapping was performed to identify quantitative trait loci (QTL) and the potential candidate genes associated with marsh spot resistance. All 138 recombinant inbred lines (RILs) from a bi-parental population were evaluated for marsh spot resistance during five years from 2015 to 2019 in sandy and heavy clay soils in Morden, Manitoba, Canada. The RILs were sequenced using a genotyping by sequencing approach. A total of 52,676 single nucleotide polymorphisms (SNPs) were identified and filtered to generate a high-quality set of 2066 SNPs for QTL mapping. A genetic map based on 1273 SNP markers distributed on 11 chromosomes and covering 1599 cm was constructed. A total of 12 stable and 4 environment-specific QTL were identified using additive effect models, and an additional two epistatic QTL interacting with two of the 16 QTL were identified using an epistasis model. Genome-wide scans of the candidate genes identified 13 metal transport-related candidate genes co-locating within six QTL regions. In particular, two QTL (QTL.3.1 and QTL.3.2) with the highest R2 values (21.8% and 24.5%, respectively) harbored several metal transport genes Phvul.003G086300, Phvul.003G092500, Phvul.003G104900, Phvul.003G099700, and Phvul.003G108900 in a large genomic region of 16.8-27.5 Mb on chromosome 3. These results advance the current understanding of the genetic mechanisms of marsh spot resistance in cranberry common bean and provide new genomic resources for use in genomics-assisted breeding and for candidate gene isolation and functional characterization.


Assuntos
Phaseolus , Vaccinium macrocarpon , Resistência à Doença/genética , Ligação Genética , Phaseolus/genética , Fenótipo , Melhoramento Vegetal , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas/genética , Áreas Alagadas
6.
Mol Genet Genomics ; 296(4): 877-891, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33903955

RESUMO

In a rapidly changing climate, flowering time (FL) adaptation is important to maximize seed yield in flax (Linum usitatissimum L.). However, our understanding of the genetic mechanism underlying FL in this multipurpose crop remains limited. With the aim of dissecting the genetic architecture of FL in flax, a genome-wide association study (GWAS) was performed on 200 accessions of the flax core collection evaluated in four environments. Two single-locus and six multi-locus models were applied using 70,935 curated single nucleotide polymorphism (SNP) markers. A total of 40 quantitative trait nucleotides (QTNs) associated with 27 quantitative trait loci (QTL) were identified in at least two environments. The number of QTL with positive-effect alleles in accessions was significantly correlated with FL (r = 0.77 to 0.82), indicating principally additive gene actions. Nine QTL were significant in at least three of the four environments accounting for 3.06-14.71% of FL variation. These stable QTL spanned regions that harbored 27 Arabidopsis thaliana and Oryza sativa FL-related orthologous genes including FLOWERING LOCUS T (Lus10013532), FLOWERING LOCUS D (Lus10028817), transcriptional regulator SUPERMAN (Lus10021215), and gibberellin 2-beta-dioxygenase 2 (Lus10037816). In silico gene expression analysis of the 27 FL candidate gene orthologous suggested that they might play roles in the transition from vegetative to reproductive phase, flower development and fertilization. Our results provide new insights into the QTL architecture of flowering time in flax, identify potential candidate genes for further studies, and demonstrate the effectiveness of combining different GWAS models for the genetic dissection of complex traits.


Assuntos
Linho , Topos Floridos/crescimento & desenvolvimento , Topos Floridos/genética , Linho/genética , Linho/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Loci Gênicos/genética , Estudo de Associação Genômica Ampla/métodos , Desequilíbrio de Ligação , Locos de Características Quantitativas , Sementes/genética , Análise de Sequência de DNA , Fatores de Tempo
7.
Theor Appl Genet ; 134(1): 191-212, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33047220

RESUMO

KEY MESSAGE: QTNs associated with drought tolerance traits and indices were identified in a flax mini-core collection through multiple GWAS models and phenotyping at multiple locations under irrigated and non-irrigated field conditions. Drought is a critical phenomenon challenging today's agricultural sector. Crop varieties adapted to moisture deficit are becoming vital. Flax can be greatly affected by limiting moisture conditions, especially during the early development and reproductive stages. Here, a mini-core collection comprising genotypes from more than 20 major growing countries was evaluated for 11 drought-related traits in irrigated and non-irrigated fields for 3 years. Heritability of the traits ranged from 44.7 to 86%. Six of the 11 traits showed significant phenotypic difference between irrigated and non-irrigated conditions. A genome-wide association study (GWAS) was performed for these six traits and their corresponding stress indices based on 106 genotypes and 12,316 single nucleotide polymorphisms (SNPs) using six multi-locus and one single-locus models. The SNPs were then assigned to 8050 linkage disequilibrium (LD) blocks to which a restricted two-stage multi-locus multi-allele GWAS was applied. A total of 144 quantitative trait nucleotides (QTNs) and 13 LD blocks were associated with at least one trait or stress index. Of these, 16 explained more than 15% of the genetic variance. Most large-effect QTN loci harbored gene(s) previously predicted to play role(s) in the associated traits. Genes mediating responses to abiotic stresses resided at loci associated with stress indices. Flax genes Lus10009480 and Lus10030150 that are predicted to encode WAX INDUCER1 and STRESS-ASSOCIATED PROTEIN (SAP), respectively, are among the important candidates detected. Accessions with multiple favorable alleles outperformed others for grain yield, thousand seed weight and fiber/biomass in non-irrigated conditions, suggesting their potential usefulness in breeding and genomic selection.


Assuntos
Secas , Linho/genética , Locos de Características Quantitativas , Estresse Fisiológico , Linho/fisiologia , Genes de Plantas , Estudos de Associação Genética , Genótipo , Desequilíbrio de Ligação , Modelos Genéticos , Fenótipo
8.
Artigo em Inglês | MEDLINE | ID: mdl-34106824

RESUMO

Six bacterial strains isolated from root nodules of soybean plants that had been inoculated with root-zone soil of legumes native to Canada were previously characterized and 1) placed in two novel lineages within the genus Bradyrhizobium and 2) assigned to symbiovar septentrionale. Here we verified the taxonomic status of these strains using genomic and phenotypic analyses. Phylogenetic analyses of five protein encoding partial gene sequences as well as 52 full length ribosome protein subunit gene sequences confirmed placement of the novel strains in two highly supported lineages distinct from named Bradyrhizobium species. The highest average nucleotide identity values of strains representing these two lineages relative to type strains of closest relatives were 90.7 and 92.3% which is well below the threshold value for bacterial species circumscription. The genomes of representative strains 1S1T, 162S2 and 66S1MBT have sizes of 10598256, 10733150 and 9032145 bp with DNA G+C contents of 63.5, 63.4 and 63.8 mol%, respectively. These strains possess between one and three plasmids based on copy number of plasmid replication and segregation (repABC) genes. Novel strains also possess numerous insertion sequences, and, relative to reference strain Bradyrhizobium diazoefficiens USDA110T, exhibit inversion and fragmentation of nodulation (nod) and nitrogen-fixation (nif) gene clusters. Phylogenetic analyses of nodC and nifH gene sequences confirmed placement of novel strains in a distinct lineage corresponding to symbiovar septentrionale. Data for morphological, physiological and symbiotic characteristics complement the sequence-based results. The data presented here support the description of two new species for which the names Bradyrhizobium septentrionale sp. nov. (sv. septentrionale) and Bradyrhizobium quebecense sp. nov. (sv. septentrionale) are proposed, with 1S1T (=LMG 29930T=HAMBI 3676T) and 66S1MBT (=LMG 31547T=HAMBI 3720T) as type strains, respectively.


Assuntos
Bradyrhizobium/genética , Bradyrhizobium/fisiologia , Fabaceae/microbiologia , Rearranjo Gênico , Mutagênese Insercional/genética , Simbiose/genética , Composição de Bases , Sequência de Bases , Teorema de Bayes , Bradyrhizobium/classificação , Canadá , Fenótipo , Filogenia , Nodulação/genética , RNA Ribossômico 16S/genética , Subunidades Ribossômicas/genética , Nódulos Radiculares de Plantas/microbiologia
9.
BMC Genomics ; 21(1): 722, 2020 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-33076828

RESUMO

BACKGROUND: The recent release of the reference genome sequence assembly of flax, a self-pollinated crop with 15 chromosome pairs, into chromosome-scale pseudomolecules enables the characterization of gene families. The ABC transporter and HMA gene families are important in the control of cadmium (Cd) accumulation in crops. To date, the genome-wide analysis of these two gene families has been successfully conducted in some plant species, but no systematic evolutionary analysis is available for the flax genome. RESULTS: Here we describe the ABC transporter and HMA gene families in flax to provide a comprehensive overview of its evolution and some support towards the functional annotation of its members. The 198 ABC transporter and 12 HMA genes identified in the flax genome were classified into eight ABC transporter and four HMA subfamilies based on their phylogenetic analysis and domains' composition. Nine of these genes, i.e., LuABCC9, LuABCC10, LuABCG58, LuABCG59, LuABCG71, LuABCG72, LuABCG73, LuHMA3, and LuHMA4, were orthologous with the Cd associated genes in Arabidopsis, rice and maize. Ten motifs were identified from all ABC transporter and HMA genes. Also, several motifs were conserved among genes of similar length, but each subfamily each had their own motif structures. Both the ABC transporter and HMA gene families were highly conserved among subfamilies of flax and with those of Arabidopsis. While four types of gene duplication were observed at different frequencies, whole-genome or segmental duplications were the most frequent with 162 genes, followed by 29 dispersed, 14 tandem and 4 proximal duplications, suggesting that segmental duplications contributed the most to the expansion of both gene families in flax. The rates of non-synonymous to synonymous (Ka/Ks) mutations of paired duplicated genes were for the most part lower than one, indicative of a predominant purifying selection. Only five pairs of genes clearly exhibited positive selection with a Ka/Ks ratio greater than one. Gene ontology analyses suggested that most flax ABC transporter and HMA genes had a role in ATP binding, transport, catalytic activity, ATPase activity, and metal ion binding. The RNA-Seq analysis of eight different organs demonstrated diversified expression profiling patterns of the genes and revealed their functional or sub-functional conservation and neo-functionalization. CONCLUSION: Characterization of the ABC transporter and HMA gene families will help in the functional analysis of candidate genes in flax and other crop species.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Linho , Metais Pesados , Família Multigênica , Transportadores de Cassetes de Ligação de ATP/genética , Trifosfato de Adenosina , Evolução Molecular , Linho/genética , Perfilação da Expressão Gênica , Genes de Plantas , Genoma de Planta , Filogenia
10.
Int J Syst Evol Microbiol ; 70(9): 5063-5074, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32804606

RESUMO

The taxonomic status of two previously characterized Bradyrhizobium strains (58S1T and S23321) isolated from contrasting habitats in Canada and Japan was verified by genomic and phenotypic analyses. Phylogenetic analyses of five and 27 concatenated protein-encoding core gene sequences placed both strains in a highly supported lineage distinct from named species in the genus Bradyrhizobium with Bradyrhizobium betae as the closest relative. Average nucleotide identity values of genome sequences between the test and reference strains were between 84.5 and 94.2 %, which is below the threshold value for bacterial species circumscription. The complete genomes of strains 58S1T and S23321 consist of single chromosomes of 7.30 and 7.23 Mbp, respectively, and do not have symbiosis islands. The genomes of both strains have a G+C content of 64.3 mol%. Present in the genome of these strains is a photosynthesis gene cluster (PGC) containing key photosynthesis genes. A tRNA gene and its partial tandem duplication were found at the boundaries of the PGC region in both strains, which is likely the hallmark of genomic island insertion. Key nitrogen-fixation genes were detected in the genomes of both strains, but nodulation and type III secretion system genes were not found. Sequence analysis of the nitrogen fixation gene, nifH, placed 58S1T and S23321 in a novel lineage distinct from described Bradyrhizobium species. Data for phenotypic tests, including growth characteristics and carbon source utilization, supported the sequence-based analyses. Based on the data presented here, a novel species with the name Bradyrhizobium cosmicum sp. nov. is proposed with 58S1T (=LMG 31545T=HAMBI 3725T) as the type strain.


Assuntos
Bradyrhizobium/classificação , Ilhas Genômicas , Glycine max/microbiologia , Fotossíntese/genética , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Bradyrhizobium/isolamento & purificação , Canadá , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Japão , Família Multigênica , Fixação de Nitrogênio/genética , RNA Ribossômico 16S/genética , Nódulos Radiculares de Plantas/microbiologia , Análise de Sequência de DNA , Simbiose/genética
11.
Int J Syst Evol Microbiol ; 70(1): 442-449, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31626586

RESUMO

Four bacterial strains isolated from root nodules of soybean plants that had been inoculated with root-zone soil of either Amphicarpaea bracteata (Hog Peanut) or Desmodium canadense (Showy Tick Trefoil) growing in Canada, were previously characterized and placed in a novel lineage within the genus Bradyrhizobium. The taxonomic status of the novel strains was verified by genomic and phenotypic analyses. Phylogenetic analyses of individual and concatenated housekeeping gene sequences (atp D, gln II, rec A, gyr B and rpo B) placed all novel strains in a highly supported lineage distinct from named Bradyrhizobium species. Data for sequence similarities of concatenated housekeeping genes of novel strains relative to type strains of named species were consistent with the phylogenetic data. Average nucleotide identity values of genome sequences (84.5-93.7 %) were below the threshold value of 95-96 % for bacterial species circumscription. Close relatives to the novel strains are Bradyrhizobium amphicarpaeae, Bradyrhizobium ottawaense and Bradyrhizobium shewense. The complete genomes of strains 85S1MBT and 65S1MB consist of single chromosomes of size 7.04 and 7.13 Mbp, respectively. The genomes of both strains have a G+C content of 64.3 mol%. These strains lack a symbiosis island as well as key nodulation, nitrogen-fixation and photosystem genes. Data from various phenotypic tests including growth characteristics and carbon source utilization supported the sequence-based analyses. Based on the data presented here, the four strains represent a novel species for which the name B radyrhizobium symbiodeficiens sp. nov., is proposed, with 85S1MBT (=LMG 29937T=HAMBI 3684T) as the type strain.


Assuntos
Bradyrhizobium/classificação , Fabaceae/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Sequência de Bases , Bradyrhizobium/isolamento & purificação , Canadá , DNA Bacteriano/genética , Genes Bacterianos , Genoma Bacteriano , Fixação de Nitrogênio , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Glycine max/microbiologia , Simbiose
12.
Int J Mol Sci ; 21(5)2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32106624

RESUMO

Molecular markers are one of the major factors affecting genomic prediction accuracy and the cost of genomic selection (GS). Previous studies have indicated that the use of quantitative trait loci (QTL) as markers in GS significantly increases prediction accuracy compared with genome-wide random single nucleotide polymorphism (SNP) markers. To optimize the selection of QTL markers in GS, a set of 260 lines from bi-parental populations with 17,277 genome-wide SNPs were used to evaluate the prediction accuracy for seed yield (YLD), days to maturity (DTM), iodine value (IOD), protein (PRO), oil (OIL), linoleic acid (LIO), and linolenic acid (LIN) contents. These seven traits were phenotyped over four years at two locations. Identification of quantitative trait nucleotides (QTNs) for the seven traits was performed using three types of statistical models for genome-wide association study: two SNP-based single-locus (SS), seven SNP-based multi-locus (SM), and one haplotype-block-based multi-locus (BM) models. The identified QTNs were then grouped into QTL based on haplotype blocks. For all seven traits, 133, 355, and 1,208 unique QTL were identified by SS, SM, and BM, respectively. A total of 1420 unique QTL were obtained by SS+SM+BM, ranging from 254 (OIL, LIO) to 361 (YLD) for individual traits, whereas a total of 427 unique QTL were achieved by SS+SM, ranging from 56 (YLD) to 128 (LIO). SS models alone did not identify sufficient QTL for GS. The highest prediction accuracies were obtained using single-trait QTL identified by SS+SM+BM for OIL (0.929 ± 0.016), PRO (0.893 ± 0.023), YLD (0.892 ± 0.030), and DTM (0.730 ± 0.062), and by SS+SM for LIN (0.837 ± 0.053), LIO (0.835 ± 0.049), and IOD (0.835 ± 0.041). In terms of the number of QTL markers and prediction accuracy, SS+SM outperformed other models or combinations thereof. The use of all SNPs or QTL of all seven traits significantly reduced the prediction accuracy of traits. The results further validated that QTL outperformed high-density genome-wide random markers, and demonstrated that the combined use of single and multi-locus models can effectively identify a comprehensive set of QTL that improve prediction accuracy, but further studies on detection and removal of redundant or false-positive QTL to maximize prediction accuracy and minimize the number of QTL markers in GS are warranted.


Assuntos
Linho/genética , Estudo de Associação Genômica Ampla/normas , Melhoramento Vegetal/normas , Locos de Características Quantitativas , Seleção Artificial , Linho/crescimento & desenvolvimento , Melhoramento Vegetal/métodos , Polimorfismo de Nucleotídeo Único
13.
Physiol Mol Biol Plants ; 26(3): 419-432, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32205920

RESUMO

The diversity of 11 fatty acid desaturase (fad2) genes has not been investigated between cultivated and wild species in the Carthamus genus. In this study, 17 C. tinctorius accessions and 28 accessions from other Carthamus species were subjected to sequence analyses of this fad2 gene family. Results showed that among these genes, fad2-1 had a major role in the conversion of oleic acid to linoleic acid. Grouping of all studied wild polyploid species and the wild diploid C. leucocaulos suggested that C. lanatus transferred its fad2-1 gene to C. turkestanicus and C. lanatus. A phylogenetic tree based on fad2-1 gene sequences also showed that C. palaestinus and C. oxyacanthus grouped with C. tinctorius individuals, suggesting that C. tinctorius is closely related to both wild species. A one base pair deletion at position 604 in the fad2-1 gene coding region correlated with high levels of oleic acid content in five mutant phenotypes of the evaluated C. tinctorius accessions. Grouping of fad2-1 and fad2-8 (Ctfad2-10) indicated that both of these genes are involved in oleate desaturases activity. The fad2-3 (Ctfad2-3) and Ctfad2-4 had the highest sequence similarity among the other fad2 genes, indicating the conservative nature of these two genes among all the studied species. Our results suggest that C. lanatus is the likely progenitor of C. turkestanicus and C. creticus (Synonym C. baeticus). Also, C. palaestinus is genetically closer to C. tinctorius but the involvement of C. oxyacanthus cannot be excluded and, this requires further investigation.

14.
Plant J ; 95(2): 371-384, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29681136

RESUMO

Genomes of varying sizes have been sequenced with next-generation sequencing platforms. However, most reference sequences include draft unordered scaffolds containing chimeras caused by mis-scaffolding. A BioNano genome (BNG) optical map was constructed to improve the previously sequenced flax genome (Linum usitatissimum L., 2n = 30, about 373 Mb), which consisted of 3852 scaffolds larger than 1 kb and totalling 300.6 Mb. The high-resolution BNG map of cv. CDC Bethune totalled 317 Mb and consisted of 251 BNG contigs with an N50 of 2.15 Mb. A total of 622 scaffolds (286.6 Mb, 94.9%) aligned to 211 BNG contigs (298.6 Mb, 94.2%). Of those, 99 scaffolds, diagnosed to contain assembly errors, were refined into 225 new scaffolds. Using the newly refined scaffold sequences and the validated bacterial artificial chromosome-based physical map of CDC Bethune, the 211 BNG contigs were scaffolded into 94 super-BNG contigs (N50 of 6.64 Mb) that were further assigned to the 15 flax chromosomes using the genetic map. The pseudomolecules total about 316 Mb, with individual chromosomes of 15.6 to 29.4 Mb, and cover 97% of the annotated genes. Evidence from the chromosome-scale pseudomolecules suggests that flax has undergone palaeopolyploidization and mesopolyploidization events, followed by rearrangements and deletions or fusion of chromosome arms from an ancient progenitor with a haploid chromosome number of eight.


Assuntos
Mapeamento Cromossômico/métodos , Linho/genética , Genoma de Planta/genética , Cromossomos de Plantas/genética , Filogenia
15.
BMC Genomics ; 20(1): 488, 2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31195958

RESUMO

BACKGROUND: With rising global temperature, understanding plants' adaptation to heat stress has implications in plant breeding. MicroRNAs (miRNAs) are small, non-coding, regulatory RNAs guiding gene expression at the post-transcriptional level. In this study, small RNAs and the degradome (parallel analysis of RNA ends) of leaf tissues collected from control and heat-stressed wheat plants immediately at the end of the stress period and 1 and 4 days later were analysed. RESULTS: Sequencing of 24 small RNA libraries produced 55.2 M reads while 404 M reads were obtained from the corresponding 24 PARE libraries. From these, 202 miRNAs were ascertained, of which mature miRNA evidence was obtained for 104 and 36 were found to be differentially expressed after heat stress. The PARE analysis identified 589 transcripts targeted by 84 of the ascertained miRNAs. PARE sequencing validated the targets of the conserved members of miRNA156, miR166 and miR393 families as squamosa promoter-binding-like, homeobox leucine-zipper and transport inhibitor responsive proteins, respectively. Heat stress responsive miRNA targeted superoxide dismutases and an array of homeobox leucine-zipper proteins, F-box proteins and protein kinases. Query of miRNA targets to interactome databases revealed a predominant association of stress responses such as signalling, antioxidant activity and ubiquitination to superoxide dismutases, F-box proteins, pentatricopeptide repeat-containing proteins and mitochondrial transcription termination factor-like proteins. CONCLUSION: The interlaced data set generated in this study identified and validated heat stress regulated miRNAs and their target genes associated with thermotolerance. Such accurate identification and validation of miRNAs and their target genes are essential to develop novel regulatory gene-based breeding strategies.


Assuntos
Resposta ao Choque Térmico/genética , MicroRNAs/genética , Triticum/genética , Triticum/fisiologia , Sequência de Bases , Redes Reguladoras de Genes , Anotação de Sequência Molecular
16.
Mol Phylogenet Evol ; 137: 22-32, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-30978393

RESUMO

Flax, one of the eight founder crops of agriculture, has been cultivated for its oil and/or fiber for millennia. Understanding genetic divergence and geographic origins of germplasm in line with their cultivation history and ecological adaptation are essential for conservation and breeding. Here we performed a genome-wide assessment based on more than 51,000 single nucleotide polymorphic sites defining 383 flax accessions from a core collection representing 37 flax growing countries. Population structure analysis resulted in a total of 12 populations that were pooled into four major groups: Temperate, South Asian, Abyssinian and Mediterranean. The vast majority (n = 335) belonged to the Temperate group that comprised eight populations including one dominated by fiber flax. Genetic variation between fiber and oil morphotypes was less pronounced than variation within morphotypes. The genetic variation among groups and populations was attributed in part to eco-geographic and anthropogenic factors. Genetic signatures indicated loci under strong selection by environmental factors such as day length. A high concentration of private haplotypes were observed in the South Asian, Mediterranean and Abyssinian populations despite their low genotype representation, hinting at the long history of the crop in these regions. The addition of genotypes from these three regions would enrich the core collection by capturing a wider genetic breadth for breeding and conservation.


Assuntos
Adaptação Fisiológica/genética , Fenômenos Ecológicos e Ambientais , Linho/genética , Geografia , Seleção Genética , Cruzamento , Genética Populacional , Genoma de Planta , Haplótipos/genética , Humanos , Filogenia , Polimorfismo de Nucleotídeo Único/genética
17.
Int J Syst Evol Microbiol ; 69(9): 2841-2848, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31251718

RESUMO

A bacterial strain, designated 39S1MBT, isolated from a root nodule of a soybean plant that had been inoculated with root-zone soil of Amphicarpaea bracteata (hog peanut) growing in Canada, was previously characterized and placed in a novel lineage within the genus Bradyrhizobium. The taxonomic status of strain 39S1MBT was verified by genomic and phenotypic analyses. Phylogenetic analyses of individual and concatenated protein-encoding gene sequences (atpD, glnII, recA, gyrB and rpoB) placed 39S1MBT in a lineage distinct from named species. Data for sequence similarities of concatenated genes relative to type strains of named species supported the phylogenetic data. Average nucleotide identity values of genome sequences (84.5-91.7 %) were well below the threshold value for bacterial species circumscription. Based on these data, Bradyrhizobium ottawaense OO99T and Bradyrhizobium shewense ERR11T are close relatives of 39S1MBT. The complete genome of 39S1MBT consists of a single 7.04 Mbp chromosome without a symbiosis island; G+C content is 64.7 mol%. Present in the genome are key photosystem and nitrogen-fixation genes, but not nodulation and type III secretion system genes. Sequence analysis of the nitrogen fixation gene, nifH, placed 39S1MBT in a novel lineage distinct from named Bradyrhizobium species. Data for phenotypic tests including growth characteristics and carbon source utilization supported the sequence-based analyses. Based on the data presented here, a novel species with the name Bradyrhizobium amphicarpaeae sp. nov. is proposed with 39S1MBT (=LMG 29934T=HAMBI 3680T) as the type strain.


Assuntos
Bradyrhizobium/classificação , Bradyrhizobium/genética , Genoma Bacteriano , Glycine max/microbiologia , Filogenia , Nódulos Radiculares de Plantas/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , Canadá , DNA Bacteriano/genética , Fabaceae/microbiologia , Ácidos Graxos/química , Genes Bacterianos , Nitrogênio , Fixação de Nitrogênio/genética , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vigna/microbiologia , Sequenciamento Completo do Genoma
18.
Int J Mol Sci ; 20(2)2019 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-30654497

RESUMO

Pasmo (Septoria linicola) is a fungal disease causing major losses in seed yield and quality and stem fibre quality in flax. Pasmo resistance (PR) is quantitative and has low heritability. To improve PR breeding efficiency, the accuracy of genomic prediction (GP) was evaluated using a diverse worldwide core collection of 370 accessions. Four marker sets, including three defined by 500, 134 and 67 previously identified quantitative trait loci (QTL) and one of 52,347 PR-correlated genome-wide single nucleotide polymorphisms, were used to build ridge regression best linear unbiased prediction (RR-BLUP) models using pasmo severity (PS) data collected from field experiments performed during five consecutive years. With five-fold random cross-validation, GP accuracy as high as 0.92 was obtained from the models using the 500 QTL when the average PS was used as the training dataset. GP accuracy increased with training population size, reaching values >0.9 with training population size greater than 185. Linear regression of the observed PS with the number of positive-effect QTL in accessions provided an alternative GP approach with an accuracy of 0.86. The results demonstrate the GP models based on marker information from all identified QTL and the 5-year PS average is highly effective for PR prediction.


Assuntos
Resistência à Doença/genética , Linho/genética , Linho/microbiologia , Genômica , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Marcadores Genéticos , Modelos Genéticos , Doenças das Plantas/imunologia , Locos de Características Quantitativas/genética
19.
Int J Mol Sci ; 19(10)2018 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-30248911

RESUMO

New flaxseed cultivars differing in seed mucilage content (MC) with low hull content (HC) represent an attractive option to simultaneously target the food and feed markets. Here, a genome-wide association study (GWAS) was conducted for MC and HC in 200 diverse flaxseed accessions genotyped with 1.7 million single nucleotide polymorphism (SNP) markers. The data obtained for MC and HC indicated a broad phenotypic variation and high (~70%) and a moderate (~49%) narrow sense heritability, respectively. MC and HC did not differ statistically between fiber and oil morphotypes, but yellow-seeded accessions had 2.7% less HC than brown-seeded ones. The genome-wide linkage disequilibrium (LD) decayed to r² = 0.1 at a physical distance of ~100 kb. Seven and four quantitative trait loci (QTL) were identified for MC and HC, respectively. Promising candidate genes identified include Linum usitatissimum orthologs of the Arabidopsis thaliana genes TRANSPARENT TESTA 8, SUBTILISIN-LIKE SERINE PROTEASE, GALACTUROSYL TRANSFERASE-LIKE 5, MUCILAGE-MODIFIED 4, AGAMOUS-LIKE MADS-BOX PROTEIN AGL62, GLYCOSYL HYDROLASE FAMILY 17, and UDP-GLUCOSE FLAVONOL 3-O-GLUCOSYLTRANSFERASE. These genes have been shown to play a role in mucilage synthesis and release, seed coat development and anthocyanin biosynthesis in A. thaliana. The favorable alleles will be useful in flaxseed breeding towards the goal of achieving the ideal MC and HC composition for food and feed by genomic-based breeding.


Assuntos
Linho/metabolismo , Estudo de Associação Genômica Ampla/métodos , Alelos , Linho/genética , Genótipo , Desequilíbrio de Ligação/genética , Fenótipo , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética , Sementes/metabolismo
20.
Int J Mol Sci ; 19(8)2018 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-30082613

RESUMO

A genome-wide association study (GWAS) was performed on a set of 260 lines which belong to three different bi-parental flax mapping populations. These lines were sequenced to an averaged genome coverage of 19× using the Illumina Hi-Seq platform. Phenotypic data for 11 seed yield and oil quality traits were collected in eight year/location environments. A total of 17,288 single nucleotide polymorphisms were identified, which explained more than 80% of the phenotypic variation for days to maturity (DTM), iodine value (IOD), palmitic (PAL), stearic, linoleic (LIO) and linolenic (LIN) acid contents. Twenty-three unique genomic regions associated with 33 quantitative trait loci (QTL) for the studied traits were detected, thereby validating four genomic regions previously identified. The 33 QTL explained 48⁻73% of the phenotypic variation for oil content, IOD, PAL, LIO and LIN but only 8⁻14% for plant height, DTM and seed yield. A genome-wide selective sweep scan for selection signatures detected 114 genomic regions that accounted for 7.82% of the flax pseudomolecule and overlapped with the 11 GWAS-detected genomic regions associated with 18 QTL for 11 traits. The results demonstrate the utility of GWAS combined with selection signatures for dissection of the genetic structure of traits and for pinpointing genomic regions for breeding improvement.


Assuntos
Linho/genética , Linho/metabolismo , Genoma de Planta/genética , Estudo de Associação Genômica Ampla/métodos , Sementes/genética , Sementes/metabolismo , Desequilíbrio de Ligação/genética , Polimorfismo de Nucleotídeo Único/genética , Locos de Características Quantitativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA