Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS Comput Biol ; 20(7): e1012259, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38968294

RESUMO

Cognitive disorders, including Down syndrome (DS), present significant morphological alterations in neuron architectural complexity. However, the relationship between neuromorphological alterations and impaired brain function is not fully understood. To address this gap, we propose a novel computational model that accounts for the observed cell deformations in DS. The model consists of a cross-sectional layer of the mouse motor cortex, composed of 3000 neurons. The network connectivity is obtained by accounting explicitly for two single-neuron morphological parameters: the mean dendritic tree radius and the spine density in excitatory pyramidal cells. We obtained these values by fitting reconstructed neuron data corresponding to three mouse models: wild-type (WT), transgenic (TgDyrk1A), and trisomic (Ts65Dn). Our findings reveal a dynamic interplay between pyramidal and fast-spiking interneurons leading to the emergence of gamma activity (∼40 Hz). In the DS models this gamma activity is diminished, corroborating experimental observations and validating our computational methodology. We further explore the impact of disrupted excitation-inhibition balance by mimicking the reduction recurrent inhibition present in DS. In this case, gamma power exhibits variable responses as a function of the external input to the network. Finally, we perform a numerical exploration of the morphological parameter space, unveiling the direct influence of each structural parameter on gamma frequency and power. Our research demonstrates a clear link between changes in morphology and the disruption of gamma oscillations in DS. This work underscores the potential of computational modeling to elucidate the relationship between neuron architecture and brain function, and ultimately improve our understanding of cognitive disorders.


Assuntos
Biologia Computacional , Síndrome de Down , Modelos Neurológicos , Síndrome de Down/fisiopatologia , Síndrome de Down/patologia , Animais , Camundongos , Células Piramidais/patologia , Células Piramidais/fisiologia , Neurônios/fisiologia , Neurônios/patologia , Interneurônios/fisiologia , Interneurônios/patologia , Simulação por Computador , Córtex Motor/fisiopatologia , Córtex Motor/patologia , Modelos Animais de Doenças , Humanos , Camundongos Transgênicos , Rede Nervosa/fisiopatologia , Rede Nervosa/patologia
2.
PLoS Comput Biol ; 19(4): e1010781, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37043504

RESUMO

Spatiotemporal oscillations underlie all cognitive brain functions. Large-scale brain models, constrained by neuroimaging data, aim to trace the principles underlying such macroscopic neural activity from the intricate and multi-scale structure of the brain. Despite substantial progress in the field, many aspects about the mechanisms behind the onset of spatiotemporal neural dynamics are still unknown. In this work we establish a simple framework for the emergence of complex brain dynamics, including high-dimensional chaos and travelling waves. The model consists of a complex network of 90 brain regions, whose structural connectivity is obtained from tractography data. The activity of each brain area is governed by a Jansen neural mass model and we normalize the total input received by each node so it amounts the same across all brain areas. This assumption allows for the existence of an homogeneous invariant manifold, i.e., a set of different stationary and oscillatory states in which all nodes behave identically. Stability analysis of these homogeneous solutions unveils a transverse instability of the synchronized state, which gives rise to different types of spatiotemporal dynamics, such as chaotic alpha activity. Additionally, we illustrate the ubiquity of this route towards complex spatiotemporal activity in a network of next generation neural mass models. Altogehter, our results unveil the bifurcation landscape that underlies the emergence of function from structure in the brain.


Assuntos
Encéfalo , Modelos Neurológicos , Neuroimagem
3.
Biol Cybern ; 117(1-2): 5-19, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36454267

RESUMO

Neural mass models (NMMs) are designed to reproduce the collective dynamics of neuronal populations. A common framework for NMMs assumes heuristically that the output firing rate of a neural population can be described by a static nonlinear transfer function (NMM1). However, a recent exact mean-field theory for quadratic integrate-and-fire (QIF) neurons challenges this view by showing that the mean firing rate is not a static function of the neuronal state but follows two coupled nonlinear differential equations (NMM2). Here we analyze and compare these two descriptions in the presence of second-order synaptic dynamics. First, we derive the mathematical equivalence between the two models in the infinitely slow synapse limit, i.e., we show that NMM1 is an approximation of NMM2 in this regime. Next, we evaluate the applicability of this limit in the context of realistic physiological parameter values by analyzing the dynamics of models with inhibitory or excitatory synapses. We show that NMM1 fails to reproduce important dynamical features of the exact model, such as the self-sustained oscillations of an inhibitory interneuron QIF network. Furthermore, in the exact model but not in the limit one, stimulation of a pyramidal cell population induces resonant oscillatory activity whose peak frequency and amplitude increase with the self-coupling gain and the external excitatory input. This may play a role in the enhanced response of densely connected networks to weak uniform inputs, such as the electric fields produced by noninvasive brain stimulation.


Assuntos
Heurística , Neurônios , Simulação por Computador , Neurônios/fisiologia , Sinapses/fisiologia , Interneurônios/fisiologia , Modelos Neurológicos , Potenciais de Ação/fisiologia
4.
Chaos ; 32(1): 013105, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35105122

RESUMO

We derive the Kuramoto model (KM) corresponding to a population of weakly coupled, nearly identical quadratic integrate-and-fire (QIF) neurons with both electrical and chemical coupling. The ratio of chemical to electrical coupling determines the phase lag of the characteristic sine coupling function of the KM and critically determines the synchronization properties of the network. We apply our results to uncover the presence of chimera states in two coupled populations of identical QIF neurons. We find that the presence of both electrical and chemical coupling is a necessary condition for chimera states to exist. Finally, we numerically demonstrate that chimera states gradually disappear as coupling strengths cease to be weak.


Assuntos
Neurônios
5.
Chaos ; 31(4): 043116, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34251260

RESUMO

Systems composed of interacting self-propelled particles (SPPs) display different forms of order-disorder phase transitions relevant to collective motion. In this paper, we propose a generalization of the Vicsek model characterized by an angular noise term following an arbitrary probability density function, which might depend on the state of the system and thus have a multiplicative character. We show that the well established vectorial Vicsek model can be expressed in this general formalism by deriving the corresponding angular probability density function, as well as we propose two new multiplicative models consisting of bivariate Gaussian and wrapped Gaussian distributions. With the proposed formalism, the mean-field system can be solved using the mean resultant length of the angular stochastic term. Accordingly, when the SPPs interact globally, the character of the phase transition depends on the choice of the noise distribution, being first order with a hybrid scaling for the vectorial and wrapped Gaussian distributions, and second order for the bivariate Gaussian distribution. Numerical simulations reveal that this scenario also holds when the interactions among SPPs are given by a static complex network. On the other hand, using spatial short-range interactions displays, in all the considered instances, a discontinuous transition with a coexistence region, consistent with the original formulation of the Vicsek model.

6.
Phys Rev Lett ; 117(20): 208301, 2016 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-27886508

RESUMO

A new method ("explosive immunization") is proposed for immunization and targeted destruction of networks. It combines the explosive percolation (EP) paradigm with the idea of maintaining a fragmented distribution of clusters. The ability of each node to block the spread of an infection (or to prevent the existence of a large cluster of connected nodes) is estimated by a score. The algorithm proceeds by first identifying low score nodes that should not be vaccinated or destroyed, analogously to the links selected in EP if they do not lead to large clusters. As in EP, this is done by selecting the worst node (weakest blocker) from a finite set of randomly chosen "candidates." Tests on several real-world and model networks suggest that the method is more efficient and faster than any existing immunization strategy. Because of the latter property it can deal with very large networks.


Assuntos
Algoritmos , Simulação por Computador , Imunização
7.
Phys Rev E ; 109(1-1): 014229, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38366470

RESUMO

Recently, low-dimensional models of neuronal activity have been exactly derived for large networks of deterministic, quadratic integrate-and-fire (QIF) neurons. Such firing rate models (FRM) describe the emergence of fast collective oscillations (>30 Hz) via the frequency locking of a subset of neurons to the global oscillation frequency. However, the suitability of such models to describe realistic neuronal states is seriously challenged by the fact that during episodes of fast collective oscillations, neuronal discharges are often very irregular and have low firing rates compared to the global oscillation frequency. Here we extend the theory to derive exact FRM for QIF neurons to include noise and show that networks of stochastic neurons displaying irregular discharges at low firing rates during episodes of fast oscillations are governed by exactly the same evolution equations as deterministic networks. Our results reconcile two traditionally confronted views on neuronal synchronization and upgrade the applicability of exact FRM to describe a broad range of biologically realistic neuronal states.


Assuntos
Modelos Neurológicos , Neurônios , Potenciais de Ação/fisiologia , Neurônios/fisiologia
8.
Sci Rep ; 10(1): 3219, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-32066810

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

9.
Phys Rev E ; 99(6-1): 062201, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31330695

RESUMO

We analyze an intermediate collective regime where amplitude oscillators distribute themselves along a closed, smooth, time-dependent curve C, thereby maintaining the typical ordering of (identical) phase oscillators. This is achieved by developing a general formalism based on two partial differential equations, which describe the evolution of the probability density along C and of the shape of C itself. The formalism is specifically developed for Stuart-Landau oscillators, but it is general enough to apply to other classes of amplitude oscillators. The main achievements consist in (i) identification and characterization of a transition to self-consistent partial synchrony (SCPS), which confirms the crucial role played by higher Fourier harmonics in the coupling function; (ii) an analytical treatment of SCPS, including a detailed stability analysis; and (iii) the discovery of a different form of collective chaos, which can be seen as a generalization of SCPS and characterized by a multifractal probability density. Finally, we are able to describe given dynamical regimes at both the macroscopic and the microscopic level, thereby shedding additional light on the relationship between the two different levels of description.

10.
Sci Rep ; 8(1): 16226, 2018 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-30385860

RESUMO

Given a reaction-diffusion system interacting via a complex network, we propose two different techniques to modify the network topology while preserving its dynamical behaviour. In the region of parameters where the homogeneous solution gets spontaneously destabilized, perturbations grow along the unstable directions made available across the networks of connections, yielding irregular spatio-temporal patterns. We exploit the spectral properties of the Laplacian operator associated to the graph in order to modify its topology, while preserving the unstable manifold of the underlying equilibrium. The new network is isodynamic to the former, meaning that it reproduces the dynamical response (pattern) to a perturbation, as displayed by the original system. The first method acts directly on the eigenmodes, thus resulting in a general redistribution of link weights which, in some cases, can completely change the structure of the original network. The second method uses localization properties of the eigenvectors to identify and randomize a subnetwork that is mostly embedded only into the stable manifold. We test both techniques on different network topologies using the Ginzburg-Landau system as a reference model. Whereas the correlation between patterns on isodynamic networks generated via the first recipe is larger, the second method allows for a finer control at the level of single nodes. This work opens up a new perspective on the multiple possibilities for identifying the family of discrete supports that instigate equivalent dynamical responses on a multispecies reaction-diffusion system.

11.
Phys Rev E ; 95(6-1): 062221, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28709323

RESUMO

We illustrate a counterintuitive effect of an additive stochastic force, which acts independently on each element of an ensemble of globally coupled oscillators. We show that a very small white noise not only broadens the clusters, wherever they are induced by the deterministic forces, but can also stabilize a linearly unstable collective periodic regime: self-consistent partial synchrony. With the help of microscopic simulations we are able to identify two noise-induced bifurcations. A macroscopic analysis, based on a perturbative solution of the associated nonlinear Fokker-Planck equation, confirms the numerical studies and allows determining the eigenvalues of the stability problem. We finally argue about the generality of the phenomenon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA