Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Glob Chang Biol ; 29(20): 5816-5828, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37485753

RESUMO

Climate change and climate-driven increases in infectious disease threaten wildlife populations globally. Gut microbial responses are predicted to either buffer or exacerbate the negative impacts of these twin pressures on host populations. However, examples that document how gut microbial communities respond to long-term shifts in climate and associated disease risk, and the consequences for host survival, are rare. Over the past two decades, wild meerkats inhabiting the Kalahari have experienced rapidly rising temperatures, which is linked to the spread of tuberculosis (TB). We show that over the same period, the faecal microbiota of this population has become enriched in Bacteroidia and impoverished in lactic acid bacteria (LAB), a group of bacteria including Lactococcus and Lactobacillus that are considered gut mutualists. These shifts occurred within individuals yet were compounded over generations, and were better explained by mean maximum temperatures than mean rainfall over the previous year. Enriched Bacteroidia were additionally associated with TB exposure and disease, the dry season and poorer body condition, factors that were all directly linked to reduced future survival. Lastly, abundances of LAB taxa were independently and positively linked to future survival, while enriched taxa did not predict survival. Together, these results point towards extreme temperatures driving an expansion of a disease-associated pathobiome and loss of beneficial taxa. Our study provides the first evidence from a longitudinally sampled population that climate change is restructuring wildlife gut microbiota, and that these changes may amplify the negative impacts of climate change through the loss of gut mutualists. While the plastic response of host-associated microbiotas is key for host adaptation under normal environmental fluctuations, extreme temperature increases might lead to a breakdown of coevolved host-mutualist relationships.


Assuntos
Microbioma Gastrointestinal , Microbiota , Humanos , Animais , Mudança Climática , Animais Selvagens , Microbioma Gastrointestinal/fisiologia , Bactérias
2.
Proc Biol Sci ; 289(1981): 20220609, 2022 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-35975437

RESUMO

Inter-individual differences in gut microbiota composition are hypothesized to generate variation in host fitness-a premise for the evolution of host-gut microbe symbioses. However, recent evidence suggests that gut microbial communities are highly dynamic, challenging the notion that individuals harbour unique gut microbial phenotypes. Leveraging a long-term dataset of wild meerkats, we reconcile these concepts by demonstrating that the relative importance of identity for shaping gut microbiota phenotypes depends on the temporal scale. Across meerkat lifespan, year-to-year variation overshadowed the effects of identity and social group in predicting gut microbiota composition, with identity explaining on average less than 2% of variation. However, identity was the strongest predictor of microbial phenotypes over short sampling intervals (less than two months), predicting on average 20% of variation. The effect of identity was also dependent on meerkat age, with the gut microbiota becoming more individualized and stable as meerkats aged. Nevertheless, while the predictive power of identity was negligible after two months, gut microbiota composition remained weakly individualized compared to that of other meerkats for up to 1 year. These findings illuminate the degree to which individualized gut microbial signatures can be expected, with important implications for the time frames over which gut microbial phenotypes may mediate host physiology, behaviour and fitness in natural populations.


Assuntos
Microbioma Gastrointestinal , Microbiota , Longevidade , RNA Ribossômico 16S , Simbiose
3.
PLoS Biol ; 17(11): e3000493, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31689300

RESUMO

Changing environmental conditions cause changes in the distributions of phenotypic traits in natural populations. However, determining the mechanisms responsible for these changes-and, in particular, the relative contributions of phenotypic plasticity versus evolutionary responses-is difficult. To our knowledge, no study has yet reported evidence that evolutionary change underlies the most widely reported phenotypic response to climate change: the advancement of breeding times. In a wild population of red deer, average parturition date has advanced by nearly 2 weeks in 4 decades. Here, we quantify the contribution of plastic, demographic, and genetic components to this change. In particular, we quantify the role of direct phenotypic plasticity in response to increasing temperatures and the role of changes in the population structure. Importantly, we show that adaptive evolution likely played a role in the shift towards earlier parturition dates. The observed rate of evolution was consistent with a response to selection and was less likely to be due to genetic drift. Our study provides a rare example of observed rates of genetic change being consistent with theoretical predictions, although the consistency would not have been detected with a solely phenotypic analysis. It also provides, to our knowledge, the first evidence of both evolution and phenotypic plasticity contributing to advances in phenology in a changing climate.


Assuntos
Cervos/fisiologia , Parto/genética , Parto/metabolismo , Adaptação Fisiológica/genética , Adaptação Fisiológica/fisiologia , Animais , Evolução Biológica , Cruzamento , Mudança Climática , Fenótipo , Reprodução/genética , Reprodução/fisiologia , Escócia , Estações do Ano , Seleção Genética/fisiologia
4.
Nature ; 535(7611): 241-5, 2016 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-27362222

RESUMO

Differences in phenological responses to climate change among species can desynchronise ecological interactions and thereby threaten ecosystem function. To assess these threats, we must quantify the relative impact of climate change on species at different trophic levels. Here, we apply a Climate Sensitivity Profile approach to 10,003 terrestrial and aquatic phenological data sets, spatially matched to temperature and precipitation data, to quantify variation in climate sensitivity. The direction, magnitude and timing of climate sensitivity varied markedly among organisms within taxonomic and trophic groups. Despite this variability, we detected systematic variation in the direction and magnitude of phenological climate sensitivity. Secondary consumers showed consistently lower climate sensitivity than other groups. We used mid-century climate change projections to estimate that the timing of phenological events could change more for primary consumers than for species in other trophic levels (6.2 versus 2.5-2.9 days earlier on average), with substantial taxonomic variation (1.1-14.8 days earlier on average).


Assuntos
Mudança Climática/estatística & dados numéricos , Ecossistema , Animais , Organismos Aquáticos , Clima , Conjuntos de Dados como Assunto , Previsões , Chuva , Estações do Ano , Especificidade da Espécie , Temperatura , Fatores de Tempo , Reino Unido
5.
Ecol Lett ; 24(4): 676-686, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33583128

RESUMO

The structure of wild animal social systems depends on a complex combination of intrinsic and extrinsic drivers. Population structuring and spatial behaviour are key determinants of individuals' observed social behaviour, but quantifying these spatial components alongside multiple other drivers remains difficult due to data scarcity and analytical complexity. We used a 43-year dataset detailing a wild red deer population to investigate how individuals' spatial behaviours drive social network positioning, while simultaneously assessing other potential contributing factors. Using Integrated Nested Laplace Approximation (INLA) multi-matrix animal models, we demonstrate that social network positions are shaped by two-dimensional landscape locations, pairwise space sharing, individual range size, and spatial and temporal variation in population density, alongside smaller but detectable impacts of a selection of individual-level phenotypic traits. These results indicate strong, multifaceted spatiotemporal structuring in this society, emphasising the importance of considering multiple spatial components when investigating the causes and consequences of sociality.


Assuntos
Cervos , Animais , Fenótipo , Comportamento Social , Rede Social , Comportamento Espacial
6.
J Anim Ecol ; 90(11): 2637-2650, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34258771

RESUMO

The ability of dispersing individuals to adjust their behaviour to changing conditions is instrumental in overcoming challenges and reducing dispersal costs, consequently increasing overall dispersal success. Understanding how dispersers' behaviour and physiology change during the dispersal process, and how they differ from resident individuals, can shed light on the mechanisms by which dispersers increase survival and maximise reproduction. By analysing individual behaviour and concentrations of faecal glucocorticoid metabolites (fGCM), a stress-associated biomarker, we sought to identify the proximate causes behind differences in survival and reproduction between dispersing and resident meerkats Suricata suricatta. We used data collected on 67 dispersing and 108 resident females to investigate (a) which individual, social and environmental factors are correlated to foraging and vigilance, and whether the role of such factors differs among dispersal phases, and between dispersers and residents; (b) how time allocated to either foraging or vigilance correlated to survival in dispersers and residents and (c) the link between aggression and change in fGCM concentration, and their relationship with reproductive rates in dispersing groups and resident groups with either long-established or newly established dominant females. Time allocated to foraging increased across dispersal phases, whereas time allocated to vigilance decreased. Time allocated to foraging and vigilance correlated positively and negatively, respectively, with dispersers' group size. We did not find a group size effect for residents. High proportions of time allocated to foraging correlated with high survival, and more so in dispersers, suggesting that maintaining good physical condition may reduce mortality during dispersal. Furthermore, while subordinate individuals rarely reproduced in resident groups, the conception rate of subordinates in newly formed dispersing groups was equal to that of their dominant individuals. Mirroring conception rates, in resident groups, fGCM concentrations were lower in subordinates than in dominants, whereas in disperser groups, fGCM concentrations did not differ between subordinates and dominants. Our results, which highlight the relationship between behavioural and physiological factors and demographic rates, provide insights into some of the mechanisms that individuals of a cooperative species can use to increase overall dispersal success.


Assuntos
Herpestidae , Agressão , Animais , Feminino , Glucocorticoides , Reprodução
7.
J Evol Biol ; 32(11): 1194-1206, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31420999

RESUMO

Warming global temperatures are affecting a range of aspects of wild populations, but the exact mechanisms driving associations between temperature and phenotypic traits may be difficult to identify. Here, we use a 36-year data set on a wild population of red deer to investigate the causes of associations between temperature and two important components of female reproduction: timing of breeding and offspring size. By separating within- versus between-individual associations with temperature for each trait, we show that within-individual phenotypic plasticity (changes within a female's lifetime) was entirely sufficient to generate the observed population-level association with temperature at key times of year. However, despite apparently adequate statistical power, we found no evidence of any variation between females in their responses (i.e. no "IxE" interactions). Our results suggest that female deer show plasticity in reproductive traits in response to temperatures in the year leading up to calving and that this response is consistent across individuals, implying no potential for either selection or heritability of plasticity. We estimate that the plastic response to rising temperatures explained 24% of the observed advance in mean calving date over the study period. We highlight the need for comparable analyses of other systems to determine the contribution of within-individual plasticity to population-level responses to climate change.


Assuntos
Comportamento Animal/fisiologia , Cervos/fisiologia , Temperatura , Animais , Animais Selvagens , Mudança Climática , Feminino , Masculino , Modelos Biológicos , Parto , Gravidez
8.
Nature ; 502(7469): 93-5, 2013 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-23965625

RESUMO

Sexual selection, through intra-male competition or female choice, is assumed to be a source of strong and sustained directional selection in the wild. In the presence of such strong directional selection, alleles enhancing a particular trait are predicted to become fixed within a population, leading to a decrease in the underlying genetic variation. However, there is often considerable genetic variation underlying sexually selected traits in wild populations, and consequently, this phenomenon has become a long-discussed issue in the field of evolutionary biology. In wild Soay sheep, large horns confer an advantage in strong intra-sexual competition, yet males show an inherited polymorphism for horn type and have substantial genetic variation in their horn size. Here we show that most genetic variation in this trait is maintained by a trade-off between natural and sexual selection at a single gene, relaxin-like receptor 2 (RXFP2). We found that an allele conferring larger horns, Ho(+), is associated with higher reproductive success, whereas a smaller horn allele, Ho(P), confers increased survival, resulting in a net effect of overdominance (that is, heterozygote advantage) for fitness at RXFP2. The nature of this trade-off is simple relative to commonly proposed explanations for the maintenance of sexually selected traits, such as genic capture ('good genes') and sexually antagonistic selection. Our results demonstrate that by identifying the genetic architecture of trait variation, we can determine the principal mechanisms maintaining genetic variation in traits under strong selection and explain apparently counter-evolutionary observations.


Assuntos
Variação Genética , Cornos , Preferência de Acasalamento Animal/fisiologia , Animais , Feminino , Genótipo , Masculino , Fenótipo , Polimorfismo Genético , Receptores Acoplados a Proteínas G/genética , Reprodução/genética , Seleção Genética , Análise de Sobrevida
9.
Ecol Lett ; 21(7): 1001-1009, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29656580

RESUMO

Demographic senescence is increasingly recognised as an important force shaping the dynamics of wild vertebrate populations. However, our understanding of the processes that underpin these declines in survival and fertility in old age remains limited. Evidence for age-related changes in foraging behaviour and habitat use is emerging from wild vertebrate studies, but the extent to which these are driven by within-individual changes, and the consequences for fitness, remain unclear. Using longitudinal census observations collected over four decades from two long-term individual-based studies of unmanaged ungulates, we demonstrate consistent within-individual declines in home range area with age in adult females. In both systems, we found that within-individual decreases in home range area were associated with increased risk of mortality the following year. Our results provide the first evidence from the wild that age-related changes in space use are predictive of adult mortality.


Assuntos
Cervos , Fertilidade , Comportamento de Retorno ao Território Vital , Animais , Ecossistema , Feminino
10.
Am Nat ; 192(2): 188-203, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30016169

RESUMO

For highly social species, population dynamics depend on hierarchical demography that links local processes, group dynamics, and population growth. Here, we describe a stage-structured matrix model of hierarchical demography, which provides a framework for understanding social influences on population change. Our approach accounts for dispersal and affords insight into population dynamics at multiple scales. The method has close parallels to integral projection models but focuses on a discrete characteristic (group size). Using detailed long-term records for meerkats (Suricata suricatta), we apply our model to explore patterns of local density dependence and implications of group size for group and population growth. Taking into account dispersers, the model predicts a per capita growth rate for social groups that declines with group size. It predicts that larger social groups should produce a greater number of new breeding groups; thus, dominant breeding females (responsible for most reproduction) are likely to be more productive in larger groups. Considering the potential for future population growth, larger groups have the highest reproductive value, but per capita reproductive value is maximized for individuals in smaller groups. Across a plausible range of dispersal conditions, meerkats' long-run population growth rate is maximized when individuals form groups of intermediate size.


Assuntos
Herpestidae , Modelos Biológicos , Comportamento Sexual Animal , Comportamento Social , Migração Animal , Animais , Feminino , Masculino , Dinâmica Populacional
11.
J Anim Ecol ; 87(3): 838-849, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29344939

RESUMO

Dispersal is a key process governing the dynamics of socially and spatially structured populations and involves three distinct stages: emigration, transience and settlement. At each stage, individuals have to make movement decisions, which are influenced by social, environmental and individual factors. Yet, a comprehensive understanding of the drivers that influence such decisions is still lacking, particularly for the transient stage during which free-living individuals are inherently difficult to follow. Social circumstances such as the likelihood of encountering conspecifics can be expected to strongly affects decision-making during dispersal, particularly in territorial species where encounters with resident conspecifics are antagonistic. Here, we analysed the movement trajectories of 47 dispersing coalitions of Kalahari meerkats Suricata suricatta through a landscape occupied by constantly monitored resident groups, while simultaneously taking into account environmental and individual characteristics. We used GPS locations collected on resident groups to create a georeferenced social landscape representing the likelihood of encountering resident groups. We used a step-selection function to infer the effect of social, environmental and individual covariates on habitat selection during dispersal. Finally, we created a temporal mismatch between the social landscape and the dispersal event of interest to identify the temporal scale at which dispersers perceive the social landscape. Including information about the social landscape considerably improved our representation of the dispersal trajectory compared to analyses that only accounted for environmental variables. The latter were only marginally selected or avoided by dispersers. Before leaving their natal territory, dispersers selected areas frequently used by their natal group. In contrast, after leaving their natal territory, they selectively used areas where they were less likely to encounter unrelated groups. This pattern was particularly marked in larger dispersing coalitions and when unrelated males were part of the dispersing coalition. Our results suggest that, in socially and spatially structured species, dispersers gather and process social information during dispersal, and that reducing risk of aggression from unrelated resident groups outweighs benefits derived from conspecific attraction. Finally, our work underlines the intimate link between the social structure of a population and dispersal, which affect each other reciprocally.


Assuntos
Distribuição Animal , Ecossistema , Herpestidae/fisiologia , Comportamento Social , Animais , Feminino , Masculino , Modelos Biológicos , Dinâmica Populacional , África do Sul
12.
Proc Biol Sci ; 284(1863)2017 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-28931736

RESUMO

In cooperative breeders, aggression from dominant breeders directed at subordinates may raise subordinate stress hormone (glucocorticoid) concentrations. This may benefit dominants by suppressing subordinate reproduction but it is uncertain whether aggression from dominants can elevate subordinate cooperative behaviour, or how resulting changes in subordinate glucocorticoid concentrations affect their cooperative behaviour. We show here that the effects of manipulating glucocorticoid concentrations in wild meerkats (Suricata suricatta) on cooperative behaviour varied between cooperative activities as well as between the sexes. Subordinates of both sexes treated with a glucocorticoid receptor antagonist (mifepristone) exhibited significantly more pup protection behaviour (babysitting) compared to those treated with glucocorticoids (cortisol) or controls. Females treated with mifepristone had a higher probability of exhibiting pup food provisioning (pup-feeding) compared to those treated with cortisol. In males, there were no treatment effects on the probability of pup-feeding, but those treated with cortisol gave a higher proportion of the food they found to pups than those treated with mifepristone. Using 19 years of behavioural data, we also show that dominant females did not increase the frequency with which they directed aggression at subordinates at times when the need for assistance was highest. Our results suggest that it is unlikely that dominant females manipulate the cooperative behaviour of subordinates through the effects of aggression on their glucocorticoid levels and that the function of aggression directed at subordinates is probably to reduce the probability they will breed.


Assuntos
Agressão , Comportamento Animal , Comportamento Cooperativo , Glucocorticoides/fisiologia , Herpestidae/fisiologia , Animais , Feminino , Masculino , Mifepristona/administração & dosagem , Receptores de Glucocorticoides/antagonistas & inibidores , Reprodução , Predomínio Social
13.
J Anim Ecol ; 86(3): 442-450, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28186336

RESUMO

Tuberculosis (TB) is an important and widespread disease of wildlife, livestock and humans world-wide, but long-term empirical datasets describing this condition are rare. A population of meerkats (Suricata suricatta) in South Africa's Kalahari Desert have been diagnosed with Mycobacterium suricattae, a novel strain of TB, causing fatal disease in this group-living species. This study aimed to find characteristics associated with clinical TB in meerkats. These characteristics could subsequently be used to identify 'at-risk' animals within a population, and target these individuals for control measures. We conducted a retrospective study based on a unique, long-term life-history dataset of over 2000 individually identified animals covering a 14-year period after the first confirmatory diagnosis of TB in this population in 2001. Individual- and group-level risk factors were analysed using time-dependent Cox regression to examine their potential influence on the time to development of end-stage TB. Cases of disease involved 144 individuals in 27 of 73 social groups, across 12 of 14 years (an incidence rate of 3·78 cases/100 study years). At the individual level, increasing age had the greatest effect on risk of disease with a hazard ratio of 4·70 (95% CI: 1·92-11·53, P < 0·01) for meerkats aged 24-48 months, and a hazard ratio of 9·36 (3·34-26·25, P < 0·001) for animals aged over 48 months (both age categories compared with animals aged below 24 months). Previous group history of TB increased the hazard by a factor of 4·29 (2·00-9·17, P < 0·01), and an interaction was found between this variable and age. At a group level, immigrations of new group members in the previous year increased hazard by a factor of 3·00 (1·23-7·34, P = 0·016). There was weaker evidence of an environmental effect with a hazard ratio for a low rainfall (<200 mm) year of 2·28 (0·91-5·72, P = 0·079). Our findings identify potential individual characteristics on which to base targeted control measures such as vaccination. Additional data on the dynamics of the infection status of individuals and how this changes over time would complement these findings by enhancing understanding of disease progression and transmission, and thus the implications of potential management measures.


Assuntos
Herpestidae , Mycobacterium/fisiologia , Predomínio Social , Tuberculose/veterinária , Fatores Etários , Animais , Incidência , Estudos Retrospectivos , Fatores de Risco , Fatores Sexuais , África do Sul/epidemiologia , Tuberculose/epidemiologia , Tuberculose/microbiologia
14.
Biol Lett ; 12(9)2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27601725

RESUMO

Costs of reproduction are expected to be ubiquitous in wild animal populations and understanding the drivers of variation in these costs is an important aspect of life-history evolution theory. We use a 43 year dataset from a wild population of red deer to examine the relative importance of two factors that influence the costs of reproduction to mothers, and to test whether these costs vary with changing ecological conditions. Like previous studies, our analyses indicate fitness costs of lactation: mothers whose calves survived the summer subsequently showed lower survival and fecundity than those whose calves died soon after birth, accounting for 5% and 14% of the variation in mothers' survival and fecundity, respectively. The production of a male calf depressed maternal survival and fecundity more than production of a female, but accounted for less than 1% of the variation in either fitness component. There was no evidence for any change in the effect of calf survival or sex with increasing population density.


Assuntos
Cervos/fisiologia , Animais , Animais Recém-Nascidos , Feminino , Fertilidade/fisiologia , Lactação/fisiologia , Masculino , Densidade Demográfica , Gravidez , Reprodução/fisiologia , Escócia , Fatores Sexuais , Análise de Sobrevida
15.
J Anim Ecol ; 84(4): 1050-8, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25640744

RESUMO

Cooperative behaviours by definition are those that provide some benefit to another individual. Allonursing, the nursing of non-descendent young, is often considered a cooperative behaviour and is assumed to provide benefits to recipient offspring in terms of growth and survival, and to their mothers, by enabling them to share the lactation load. However, these proposed benefits are not well understood, in part because maternal and litter traits and other ecological and social variables are not independent of one another, making patterns hard to discern using standard univariate analyses. Here, we investigate the potential benefits of allonursing in the cooperatively breeding Kalahari meerkat, where socially subordinate females allonurse the young of a dominant pair without having young of their own. We use structural equation modelling to allow us to account for the interdependence of maternal traits, litter traits and environmental factors. We find no evidence that allonursing provides benefits to pups or mothers. Pups that received allonursing were not heavier at emergence and did not have a higher survival rate than pups that did not receive allonursing. Mothers whose litters were allonursed were not in better physical condition, did not reconceive faster and did not reduce their own nursing investment compared to mothers who nursed their litters alone. These patterns were not significantly influenced by whether mothers were in relatively good, or poor, condition. We suggest that allonursing may persist in this species because the costs to allonurses may be low. Alternatively, allonursing may confer other, more cryptic, benefits to pups or allonurses, such as immunological or social benefits.


Assuntos
Comportamento Cooperativo , Herpestidae/fisiologia , Lactação/fisiologia , Animais , Animais Lactentes , Comportamento Animal , Feminino , Comportamento Materno , Comportamento Social , Predomínio Social , África do Sul
16.
J Anim Ecol ; 84(1): 260-71, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24995457

RESUMO

Multiple approaches exist to model patterns of space use across species, among them resource selection analysis, statistical home-range modelling and mechanistic movement modelling. Mechanistic home-range models combine the benefits of these approaches, describing emergent territorial patterns based on fine-scale individual- or group-movement rules and incorporating interactions with neighbours and the environment. These models have not, to date, been extended to dynamic contexts. Using mechanistic home-range models, we explore meerkat (Suricata suricatta) territorial patterns, considering scent marking, direct group interactions and habitat selection. We also extend the models to accommodate dynamic aspects of meerkat territoriality (territory development and territory shift). We fit models, representing multiple working hypotheses, to data from a long-term meerkat study in South Africa, and we compare models using Akaike's and Bayesian Information Criteria. Our results identify important features of meerkat territorial patterns. Notably, larger groups do not seem to control larger territories, and groups apparently prefer dune edges along a dry river bed. Our model extensions capture instances in which 1) a newly formed group interacts more strongly with its parent groups over time and 2) a group moves its territory core out of aversive habitat. This extends our mechanistic modelling framework in previously unexplored directions.


Assuntos
Ecossistema , Herpestidae/fisiologia , Comportamento de Retorno ao Território Vital , Modelos Biológicos , Territorialidade , Distribuição Animal , Animais , Feminino , Masculino , Dinâmica Populacional , África do Sul
17.
Proc Biol Sci ; 281(1792)2014 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-25122226

RESUMO

The evolutionary theories of senescence predict that investment in reproduction in early life should come at the cost of reduced somatic maintenance, and thus earlier or more rapid senescence. There is now growing support for such trade-offs in wild vertebrates, but these exclusively come from females. Here, we test this prediction in male red deer (Cervus elaphus) using detailed longitudinal data collected over a 40-year field study. We show that males which had larger harems and thereby allocated more resources to reproduction during early adulthood experienced higher rates of senescence in both harem size and rut duration. Males that carried antlers with more points during early life did not show more pronounced declines in reproductive traits in later life. Overall, we demonstrate that sexual competition shapes male reproductive senescence in wild red deer populations and provide rare empirical support for the disposable soma theory of ageing in males of polygynous vertebrate species.


Assuntos
Envelhecimento/fisiologia , Cervos/fisiologia , Reprodução/fisiologia , Comportamento Sexual , Comportamento Social , Animais , Comportamento Animal , Cervos/anatomia & histologia , Masculino , Caracteres Sexuais
18.
J Anim Ecol ; 83(2): 332-42, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24102215

RESUMO

Resource availability plays a key role in driving variation in somatic growth and body condition, and the factors determining access to resources vary considerably across life stages. Parents and carers may exert important influences in early life, when individuals are nutritionally dependent, with abiotic environmental effects having stronger influences later in development as individuals forage independently. Most studies have measured specific factors influencing growth across development or have compared relative influences of different factors within specific life stages. Such studies may not capture whether early-life factors continue to have delayed effects at later stages, or whether social factors change when individuals become nutritionally independent and adults become competitors for, rather than providers of, food. Here, we examined variation in the influence of the abiotic, social and maternal environment on growth across life stages in a wild population of cooperatively breeding meerkats. Cooperatively breeding vertebrates are ideal for investigating environmental influences on growth. In addition to experiencing highly variable abiotic conditions, cooperative breeders are typified by heterogeneity both among breeders, with mothers varying in age and social status, and in the number of carers present. Recent rainfall had a consistently marked effect on growth across life stages, yet other seasonal terms only influenced growth during stages when individuals were growing fastest. Group size and maternal dominance status had positive effects on growth during the period of nutritional dependence on carers, but did not influence mass at emergence (at 1 month) or growth at independent stages (>4 months). Pups born to older mothers were lighter at 1 month of age and subsequently grew faster as subadults. Males grew faster than females during the juvenile and subadult stage only. Our findings demonstrate the complex ways in which the external environment influences development in a cooperative mammal. Individuals are most sensitive to social and maternal factors during the period of nutritional dependence on carers, whereas direct environmental effects are relatively more important later in development. Understanding the way in which environmental sensitivity varies across life stages is likely to be an important consideration in predicting trait responses to environmental change.


Assuntos
Meio Ambiente , Herpestidae/fisiologia , Comportamento Materno , Comportamento Social , Animais , Peso Corporal , Comportamento Cooperativo , Feminino , Herpestidae/crescimento & desenvolvimento , Masculino , África do Sul
19.
J Anim Ecol ; 83(6): 1357-66, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24749732

RESUMO

Social and environmental factors influence key life-history processes and population dynamics by affecting fitness-related phenotypic traits such as body mass. The role of body mass is particularly pronounced in cooperative breeders due to variation in social status and consequent variation in access to resources. Investigating the mechanisms underlying variation in body mass and its demographic consequences can help elucidate how social and environmental factors affect the dynamics of cooperatively breeding populations. In this study, we present an analysis of the effect of individual variation in body mass on the temporal dynamics of group size and structure of a cooperatively breeding mongoose, the Kalahari meerkat, Suricata suricatta. First, we investigate how body mass interacts with social (dominance status and number of helpers) and environmental (rainfall and season) factors to influence key life-history processes (survival, growth, emigration and reproduction) in female meerkats. Next, using an individual-based population model, we show that the models explicitly including individual variation in body mass predict group dynamics better than those ignoring this morphological trait. Body mass influences group dynamics mainly through its effects on helper emigration and dominant reproduction. Rainfall has a trait-mediated, destabilizing effect on group dynamics, whereas the number of helpers has a direct and stabilizing effect. Counteracting effects of number of helpers on different demographic rates, despite generating temporal fluctuations, stabilizes group dynamics in the long term. Our study demonstrates that social and environmental factors interact to produce individual variation in body mass and accounting for this variation helps to explain group dynamics in this cooperatively breeding population.


Assuntos
Peso Corporal , Herpestidae/fisiologia , Comportamento Social , Animais , Feminino , Masculino , Modelos Biológicos , Dinâmica Populacional , Reprodução , Estações do Ano , África do Sul
20.
Biol Lett ; 9(1): 20121054, 2013 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-23234867

RESUMO

Kin recognition is a useful ability for animals, facilitating cooperation among relatives and avoidance of excessive kin competition or inbreeding. In meerkats, Suricata suricatta, encounters between unfamiliar kin are relatively frequent, and kin recognition by phenotype matching is expected to avoid inbreeding with close relatives. Here, we investigate whether female meerkats are able to discriminate the scent of unfamiliar kin from unfamiliar non-kin. Dominant females were presented with anal gland secretion from unfamiliar individuals that varied in their relatedness. Our result indicates that females spent more time investigating the scent of related than unrelated unfamiliar individuals, suggesting that females may use a phenotype matching mechanism (or recognition alleles) to discriminate the odour of their kin from the odour of their non-kin. Our study provides a key starting point for further investigations into the use of kin recognition for inbreeding avoidance in the widely studied meerkat.


Assuntos
Canal Anal/metabolismo , Sinais (Psicologia) , Herpestidae/fisiologia , Odorantes , Olfato , Animais , Discriminação Psicológica , Feminino , Herpestidae/genética , Masculino , Fenótipo , Reconhecimento Psicológico , Comportamento Social , África do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA