RESUMO
BACKGROUND: Bimiralisib is a pan-PI3K/mTOR inhibitor demonstrating antitumor efficacy in preclinical models. The objectives of this study were to identify a maximum tolerated dose (MTD), pharmacokinetics (PK), a dosing schedule, and adverse events (AEs) in patients with advanced solid tumors. PATIENTS AND METHODS: Patients received oral bimiralisib to determine the MTD of one continuous (once daily) and two intermittent schedules (A: Days 1, 2 weekly; B: Days 1, 4 weekly) until progression or unacceptable AEs occurred. RESULTS: The MTD for the continuous schedule was 80 mg, with grade three fatigue as the dose-limiting toxicity (DLT). No MTD was reached with intermittent schedules, with only one DLT in schedule B. PK analysis suggested that 140 mg (schedule A) was within the biologically active dose range and was selected for further exploration. The most frequent treatment-emergent AEs were hyperglycemia (76.2%) in the continuous schedule, and nausea (56-62.5%) in schedules A and B. The most frequent treatment-emergent > grade three AE for all schedules combined was hyperglycemia (28.6%, continuous schedule; 12.0%, schedule A; 12.5%, schedule B). There was one partial response in a head and neck squamous cancer patient with a NOTCH1T1997M mutation. CONCLUSIONS: Bimiralisib demonstrated a manageable AE profile consistent with this compound class. Intermittent schedules had fewer > grade three AEs, while also maintaining favorable PK profiles. Intermittent schedule A is proposed for further development in biomarker-selected patient populations.
RESUMO
Vaccines have played a central role in combating the COVID-19 pandemic, but newly emerging SARS-CoV-2 variants are increasingly evading first-generation vaccine protection. To address this challenge, we designed "single-cycle infection SARS-CoV-2 viruses" (SCVs) that lack essential viral genes, possess distinctive immune-modulatory features, and exhibit an excellent safety profile in the Syrian hamster model. Animals intranasally vaccinated with an Envelope-gene-deleted vaccine candidate were fully protected against an autologous challenge with the SARS-CoV-2 virus through systemic and mucosal humoral immune responses. Additionally, the deletion of immune-downregulating viral genes in the vaccine construct prevented challenge virus transmission to contact animals. Moreover, vaccinated animals displayed neither tissue inflammation nor lung damage. Consequently, SCVs hold promising potential to induce potent protection against COVID-19, surpassing the immunity conferred by natural infection, as demonstrated in human immune cells.
RESUMO
Approved vaccines are effective against severe COVID-19, but broader immunity is needed against new variants and transmission. Therefore, we developed genome-modified live-attenuated vaccines (LAV) by recoding the SARS-CoV-2 genome, including 'one-to-stop' (OTS) codons, disabling Nsp1 translational repression and removing ORF6, 7ab and 8 to boost host immune responses, as well as the spike polybasic cleavage site to optimize the safety profile. The resulting OTS-modified SARS-CoV-2 LAVs, designated as OTS-206 and OTS-228, are genetically stable and can be intranasally administered, while being adjustable and sustainable regarding the level of attenuation. OTS-228 exhibits an optimal safety profile in preclinical animal models, with no side effects or detectable transmission. A single-dose vaccination induces a sterilizing immunity in vivo against homologous WT SARS-CoV-2 challenge infection and a broad protection against Omicron BA.2, BA.5 and XBB.1.5, with reduced transmission. Finally, this promising LAV approach could be applicable to other emerging viruses.
Assuntos
Vacinas contra COVID-19 , COVID-19 , Genoma Viral , SARS-CoV-2 , Vacinas Atenuadas , Vacinas Atenuadas/imunologia , Vacinas Atenuadas/genética , Vacinas Atenuadas/administração & dosagem , SARS-CoV-2/genética , SARS-CoV-2/imunologia , COVID-19/prevenção & controle , COVID-19/transmissão , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/genética , Animais , Genoma Viral/genética , Humanos , Camundongos , Anticorpos Antivirais/imunologia , Anticorpos Antivirais/sangue , Feminino , Chlorocebus aethiops , Modelos Animais de Doenças , Células Vero , Anticorpos Neutralizantes/imunologiaRESUMO
Stressful conditions induce the cell to save energy and activate a rescue program modulated by mammalian target of rapamycin (mTOR). Along with transcriptional and translational regulation, the cell relies also on post-transcriptional modulation to quickly adapt the translation of essential proteins. MicroRNAs play an important role in the regulation of protein translation, and their availability is tightly regulated by RNA competing mechanisms often mediated by long noncoding RNAs (lncRNAs). In our paper, we simulated the response to growth adverse condition by bimiralisib, a dual PI3K/mTOR inhibitor, in diffuse large B cell lymphoma cell lines, and we studied post-transcriptional regulation by the differential analysis of exonic and intronic RNA expression. In particular, we observed the upregulation of a lncRNA, lncTNK2-2:1, which correlated with the stabilization of transcripts involved in the regulation of translation and DNA damage after bimiralisib treatment. We identified miR-21-3p as miRNA likely sponged by lncTNK2-2:1, with consequent stabilization of the mRNA of p53, which is a master regulator of cell growth in response to DNA damage.
RESUMO
Phosphoinositide 3-kinase (PI3K)/protein kinase B/Akt and Ras/mitogen-activated protein kinase pathways are often constitutively activated in melanoma and have thus been considered as promising drug targets. Exposure of melanoma cells to NVP-BAG956, NVP-BBD130, and NVP-BEZ235, a series of novel, potent, and stable dual PI3K/mammalian target of rapamycin (mTOR) inhibitors, resulted in complete G1 growth arrest, reduction of cyclin D1, and increased levels of p27(KIP1), but negligible apoptosis. In contrast, treatment of melanoma with the pan-class I PI3K inhibitor ZSTK474 or the mTORC1 inhibitor rapamycin resulted only in minor reduction of cell proliferation. In a syngeneic B16 mouse melanoma tumor model, orally administered NVP-BBD130 and NVP-BEZ235 efficiently attenuated tumor growth at primary and lymph node metastatic sites with no obvious toxicity. Metastatic melanoma in inhibitor-treated mice displayed reduced numbers of proliferating and significantly smaller tumor cells. In addition, neovascularization was blocked and tumoral necrosis increased when compared with vehicle-treated mice. In conclusion, compounds targeting PI3K and mTOR simultaneously were advantageous to attenuate melanoma growth and they develop their potential by targeting tumor growth directly, and indirectly via their interference with angiogenesis. Based on the above results, NVP-BEZ235, which has entered phase I/II clinical trials in patients with advanced solid tumors, has a potential in metastatic melanoma therapy.
Assuntos
Imidazóis/farmacologia , Melanoma Experimental/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Quinases/metabolismo , Quinolinas/farmacologia , Sirolimo/farmacologia , Triazinas/farmacologia , Proteínas Quinases Dependentes de 3-Fosfoinositídeo , Administração Oral , Animais , Antibióticos Antineoplásicos/farmacologia , Apoptose/fisiologia , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sinergismo Farmacológico , Feminino , Proteína Forkhead Box O1 , Fatores de Transcrição Forkhead/metabolismo , Humanos , Immunoblotting , Técnicas Imunoenzimáticas , Melanoma Experimental/patologia , Camundongos , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Transporte Proteico , Serina-Treonina Quinases TOR , Células Tumorais CultivadasRESUMO
Phosphoinositide 3-kinases (PI3K) orchestrate cell responses including mitogenic signaling, cell survival and growth, metabolic control, vesicular trafficking, degranulation, cytoskeletal rearrangement and migration. Deregulation of the PI3K pathway occurs by activating mutations in growth factor receptors or the PIK3CA locus coding for PI3Kalpha, by loss of function of the lipid phosphatase and tensin homolog deleted in chromosome ten (PTEN/MMAC/TEP1), by the up-regulation of protein kinase B (PKB/Akt), or the impairment of the tuberous sclerosis complex (TSC1/2). All these events are linked to growth and proliferation, and have thus prompted a significant interest in the pharmaceutical targeting of the PI3K pathway in cancer. Genetic targeting of PI3Kgamma (p110gamma) and PI3Kdelta (p110delta) in mice has underlined a central role of these PI3K isoforms in inflammation and allergy, as they modulate chemotaxis of leukocytes and degranulation in mast cells. Proof-of-concept molecules selective for PI3Kgamma have already successfully alleviated disease progress in murine models of rheumatoid arthritis and lupus erythematosus. As targeting PI3K moves forward to therapy of chronic, non-fatal disease, safety concerns for PI3K inhibitors increase. Many of the present inhibitor series interfere with target of rapamycin (TOR), DNA-dependent protein kinase (DNA-PK(cs)) and activity of the ataxia telangiectasia mutated gene product (ATM). Here we review the current disease-relevant knowledge for isoform-specific PI3K function in the above mentioned diseases, and review the progress of >400 recent patents covering pharmaceutical targeting of PI3K. Currently, several drugs targeting the PI3K pathway have entered clinical trials (phase I) for solid tumors and suppression of tissue damage after myocardial infarction (phases I,II).
Assuntos
Inibidores Enzimáticos/metabolismo , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Apoptose/efeitos dos fármacos , Doenças Cardiovasculares/tratamento farmacológico , Doenças Cardiovasculares/enzimologia , Doenças Cardiovasculares/metabolismo , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Ativação Enzimática , Inibidores Enzimáticos/química , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Humanos , Doenças do Sistema Imunitário/tratamento farmacológico , Doenças do Sistema Imunitário/enzimologia , Doenças do Sistema Imunitário/metabolismo , Doenças Metabólicas/tratamento farmacológico , Doenças Metabólicas/enzimologia , Doenças Metabólicas/metabolismo , Neoplasias/tratamento farmacológico , Neoplasias/enzimologia , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/química , Transdução de Sinais/efeitos dos fármacos , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor/metabolismoRESUMO
The phosphatidylinositol 3-kinase (PI3K)/AKT/mammalian target of rapamycin (mTOR) signaling cascade is an important therapeutic target for lymphomas. Rapamycin-derivates as allosteric mTOR complex 1 (TORC1) inhibitors have shown moderate preclinical and clinical anti-lymphoma activity. Here, we assessed the anti-tumor activity of PQR620, a novel brain penetrant dual TORC1/2 inhibitor, in 56 lymphoma cell lines. We observed anti-tumor activity across 56 lymphoma models with a median IC50 value of 250 nM after 72 h of exposure. PQR620 was largely cytostatic, but the combination with the BCL2 inhibitor venetoclax led to cytotoxicity. Both the single agent and the combination data were validated in xenograft models. The data support further evaluation of PQR620 as a single agent or in combination with venetoclax.
RESUMO
BACKGROUND: PQR309 is an orally bioavailable, balanced pan-phosphatidylinositol-3-kinase (PI3K), mammalian target of rapamycin (mTOR) C1 and mTORC2 inhibitor. PATIENTS AND METHODS: This is an accelerated titration, 3 + 3 dose-escalation, open-label phase I trial of continuous once-daily (OD) PQR309 administration to evaluate the safety, pharmacokinetics (PK) and pharmacodynamics in patients with advanced solid tumours. Primary objectives were to determine the maximum tolerated dose (MTD) and recommended phase 2 dose (RP2D). RESULTS: Twenty-eight patients were included in six dosing cohorts and treated at a daily PQR309 dose ranging from 10 to 150 mg. Common adverse events (AEs; ≥30% patients) included fatigue, hyperglycaemia, nausea, diarrhoea, constipation, rash, anorexia and vomiting. Grade (G) 3 or 4 drug-related AEs were seen in 13 (46%) and three (11%) patients, respectively. Dose-limiting toxicity (DLT) was observed in two patients at 100 mg OD (>14-d interruption in PQR309 due to G3 rash, G2 hyperbilirubinaemia, G4 suicide attempt; dose reduction due to G3 fatigue, G2 diarrhoea, G4 transaminitis) and one patient at 80 mg (G3 hyperglycaemia >7 d). PK shows fast absorption (Tmax 1-2 h) and dose proportionality for Cmax and area under the curve. A partial response in a patient with metastatic thymus cancer, 24% disease volume reduction in a patient with sinonasal cancer and stable disease for more than 16 weeks in a patient with clear cell Bartholin's gland cancer were observed. CONCLUSION: The MTD and RP2D of PQR309 is 80 mg of orally OD. PK is dose-proportional. PD shows PI3K pathway phosphoprotein downregulation in paired tumour biopsies. Clinical activity was observed in patients with and without PI3K pathway dysregulation. CLINICAL TRIAL REGISTRATION: ClinicalTrials.gov # NCT01940133.
Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Alvo Mecanístico do Complexo 1 de Rapamicina/antagonistas & inibidores , Alvo Mecanístico do Complexo 2 de Rapamicina/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacocinética , Administração Oral , Adulto , Idoso , Antineoplásicos/efeitos adversos , Relação Dose-Resposta a Droga , Europa (Continente) , Feminino , Humanos , Masculino , Dose Máxima Tolerável , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Pessoa de Meia-Idade , Terapia de Alvo Molecular , Neoplasias/enzimologia , Neoplasias/patologia , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Proteínas Quinases/efeitos adversos , Transdução de Sinais/efeitos dos fármacos , Resultado do Tratamento , Adulto JovemRESUMO
Purpose: Activation of the PI3K/mTOR signaling pathway is recurrent in different lymphoma types, and pharmacologic inhibition of the PI3K/mTOR pathway has shown activity in lymphoma patients. Here, we extensively characterized the in vitro and in vivo activity and the mechanism of action of PQR309 (bimiralisib), a novel oral selective dual PI3K/mTOR inhibitor under clinical evaluation, in preclinical lymphoma models.Experimental Design: This study included preclinical in vitro activity screening on a large panel of cell lines, both as single agent and in combination, validation experiments on in vivo models and primary cells, proteomics and gene-expression profiling, and comparison with other signaling inhibitors.Results: PQR309 had in vitro antilymphoma activity as single agent and in combination with venetoclax, panobinostat, ibrutinib, lenalidomide, ARV-825, marizomib, and rituximab. Sensitivity to PQR309 was associated with specific baseline gene-expression features, such as high expression of transcripts coding for the BCR pathway. Combining proteomics and RNA profiling, we identified the different contribution of PQR309-induced protein phosphorylation and gene expression changes to the drug mechanism of action. Gene-expression signatures induced by PQR309 and by other signaling inhibitors largely overlapped. PQR309 showed activity in cells with primary or secondary resistance to idelalisib.Conclusions: On the basis of these results, PQR309 appeared as a novel and promising compound that is worth developing in the lymphoma setting. Clin Cancer Res; 24(1); 120-9. ©2017 AACR.
Assuntos
Antineoplásicos/farmacologia , Linfoma/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Resistencia a Medicamentos Antineoplásicos , Humanos , Linfoma/tratamento farmacológico , Linfoma/genética , Linfoma/patologia , Proteínas Proto-Oncogênicas c-myc/genética , Proteínas Proto-Oncogênicas c-myc/metabolismo , Purinas , Quinazolinonas , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Phosphoinositide 3-kinase (PI3K) is deregulated in a wide variety of human tumors and triggers activation of protein kinase B (PKB/Akt) and mammalian target of rapamycin (mTOR). Here we describe the preclinical characterization of compound 1 (PQR309, bimiralisib), a potent 4,6-dimorpholino-1,3,5-triazine-based pan-class I PI3K inhibitor, which targets mTOR kinase in a balanced fashion at higher concentrations. No off-target interactions were detected for 1 in a wide panel of protein kinase, enzyme, and receptor ligand assays. Moreover, 1 did not bind tubulin, which was observed for the structurally related 4 (BKM120, buparlisib). Compound 1 is orally available, crosses the blood-brain barrier, and displayed favorable pharmacokinetic parameters in mice, rats, and dogs. Compound 1 demonstrated efficiency in inhibiting proliferation in tumor cell lines and a rat xenograft model. This, together with the compound's safety profile, identifies 1 as a clinical candidate with a broad application range in oncology, including treatment of brain tumors or CNS metastasis. Compound 1 is currently in phase II clinical trials for advanced solid tumors and refractory lymphoma.
Assuntos
Aminopiridinas/uso terapêutico , Antineoplásicos/uso terapêutico , Morfolinas/uso terapêutico , Neoplasias/tratamento farmacológico , Inibidores de Fosfoinositídeo-3 Quinase , Inibidores de Proteínas Quinases/uso terapêutico , Serina-Treonina Quinases TOR/antagonistas & inibidores , Administração Oral , Aminopiridinas/administração & dosagem , Aminopiridinas/farmacocinética , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/farmacocinética , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Proliferação de Células/efeitos dos fármacos , Cães , Humanos , Camundongos , Modelos Moleculares , Morfolinas/administração & dosagem , Morfolinas/farmacocinética , Neoplasias/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Inibidores de Proteínas Quinases/administração & dosagem , Inibidores de Proteínas Quinases/farmacocinética , Ratos , Ratos Nus , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismoRESUMO
BKM120 (Buparlisib) is one of the most advanced phosphoinositide 3-kinase (PI3K) inhibitors for the treatment of cancer, but it interferes as an off-target effect with microtubule polymerization. Here, we developed two chemical derivatives that differ from BKM120 by only one atom. We show that these minute changes separate the dual activity of BKM120 into discrete PI3K and tubulin inhibitors. Analysis of the compounds cellular growth arrest phenotypes and microtubule dynamics suggest that the antiproliferative activity of BKM120 is mainly due to microtubule-dependent cytotoxicity rather than through inhibition of PI3K. Crystal structures of BKM120 and derivatives in complex with tubulin and PI3K provide insights into the selective mode of action of this class of drugs. Our results raise concerns over BKM120's generally accepted mode of action, and provide a unique mechanistic basis for next-generation PI3K inhibitors with improved safety profiles and flexibility for use in combination therapies.