Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Traffic ; 19(1): 44-57, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-28972287

RESUMO

Expression of Eph receptors and their ligands, the ephrins, have important functions in boundary formation and morphogenesis in both adult and embryonic tissue. The EphB receptors and ephrinB ligands are transmembrane proteins that are expressed in different cells and their interaction drives cell repulsion. For cell repulsion to occur, trans-endocytosis of the inter-cellular receptor-ligand EphB-ephrinB complex is required. The molecular mechanism underlying trans-endocytosis is poorly defined. Here we show that the process is clathrin- and Eps15R-mediated using Co115 colorectal cell lines stably expressing EphB2 and ephrinB1. Cell repulsion in co-cultures of EphB2- and ephrinB1-expressing cells is significantly reduced by knockdown of Eps15R but not Eps15. A novel interaction motif in Eps15R, DPFxxLDPF, is shown to bind directly to the clathrin terminal domain in vitro. Moreover, the interaction between Eps15R and clathrin is required for EphB2-mediated cell repulsion as shown in a rescue experiment in the EphB2 co-culture assay where wild type Eps15R but not the clathrin-binding mutant rescues cell repulsion. These results provide the first evidence that Eps15R together with clathrin control EphB/ephrinB trans-endocytosis and thereby cell repulsion.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Clatrina/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Animais , Sítios de Ligação , Linhagem Celular , Chlorocebus aethiops , Clatrina/química , Endocitose , Efrina-B1/metabolismo , Células HeLa , Humanos , Camundongos , Ligação Proteica , Ratos , Receptor EphB2/metabolismo
2.
PLoS Genet ; 9(10): e1003885, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24204300

RESUMO

In multicellular organisms, tight regulation of gene expression ensures appropriate tissue and organismal growth throughout development. Reversible phosphorylation of the RNA Polymerase II (RNAPII) C-terminal domain (CTD) is critical for the regulation of gene expression states, but how phosphorylation is actively modified in a developmental context remains poorly understood. Protein phosphatase 1 (PP1) is one of several enzymes that has been reported to dephosphorylate the RNAPII CTD. However, PP1's contribution to transcriptional regulation during animal development and the mechanisms by which its activity is targeted to RNAPII have not been fully elucidated. Here we show that the Drosophila orthologue of the PP1 Nuclear Targeting Subunit (dPNUTS) is essential for organismal development and is cell autonomously required for growth of developing tissues. The function of dPNUTS in tissue development depends on its binding to PP1, which we show is targeted by dPNUTS to RNAPII at many active sites of transcription on chromosomes. Loss of dPNUTS function or specific disruption of its ability to bind PP1 results in hyperphosphorylation of the RNAPII CTD in whole animal extracts and on chromosomes. Consistent with dPNUTS being a global transcriptional regulator, we find that loss of dPNUTS function affects the expression of the majority of genes in developing 1(st) instar larvae, including those that promote proliferative growth. Together, these findings shed light on the in vivo role of the PNUTS-PP1 holoenzyme and its contribution to the control of gene expression during early Drosophila development.


Assuntos
Drosophila melanogaster/genética , Proteína Fosfatase 1/biossíntese , RNA Polimerase II/genética , Transcrição Gênica , Animais , Domínio Catalítico/genética , Proteínas de Ligação a DNA/genética , Drosophila melanogaster/embriologia , Drosophila melanogaster/crescimento & desenvolvimento , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Dados de Sequência Molecular , Fosforilação/genética , Proteína Fosfatase 1/química , Proteína Fosfatase 1/genética , Estrutura Terciária de Proteína/genética , RNA Polimerase II/metabolismo , Proteínas de Ligação a RNA/genética
3.
Cell Death Dis ; 15(1): 40, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38216558

RESUMO

The activation of apoptosis signalling by TRAIL (TNF-related apoptosis-inducing ligand) through receptor binding is a fundamental mechanism of cell death induction and is often perturbed in cancer cells to enhance their cell survival and treatment resistance. Ubiquitination plays an important role in the regulation of TRAIL-mediated apoptosis, and here we investigate the role of the E3 ubiquitin ligase Itch in TRAIL-mediated apoptosis in oesophageal cancer cells. Knockdown of Itch expression results in resistance to TRAIL-induced apoptosis, caspase-8 activation, Bid cleavage and also promotes cisplatin resistance. Whilst the assembly of the death-inducing signalling complex (DISC) at the plasma membrane is not perturbed relative to the control, TRAIL-R2 is mis-localised in the Itch-knockdown cells. Further, we observe significant changes to mitochondrial morphology alongside an increased cholesterol content. Mitochondrial cholesterol is recognised as an important anti-apoptotic agent in cancer. Cells treated with a drug that increases mitochondrial cholesterol levels, U18666A, shows a protection from TRAIL-induced apoptosis, reduced caspase-8 activation, Bid cleavage and cisplatin resistance. We demonstrate that Itch knockdown cells are less sensitive to a Bcl-2 inhibitor, show impaired activation of Bax, cytochrome c release and an enhanced stability of the cholesterol transfer protein STARD1. We identify a novel protein complex composed of Itch, the mitochondrial protein VDAC2 and STARD1. We propose a mechanism where Itch regulates the stability of STARD1. An increase in STARD1 expression enhances cholesterol import to mitochondria, which inhibits Bax activation and cytochrome c release. Many cancer types display high mitochondrial cholesterol levels, and oesophageal adenocarcinoma tumours show a correlation between chemotherapy resistance and STARD1 expression which is supported by our findings. This establishes an important role for Itch in regulation of extrinsic and intrinsic apoptosis, mitochondrial cholesterol levels and provides insight to mechanisms that contribute to TRAIL, Bcl-2 inhibitor and cisplatin resistance in cancer cells.


Assuntos
Apoptose , Ubiquitina-Proteína Ligases , Antineoplásicos/farmacologia , Proteína X Associada a bcl-2/genética , Proteína X Associada a bcl-2/metabolismo , Caspase 8/genética , Caspase 8/metabolismo , Colesterol/metabolismo , Cisplatino/farmacologia , Cisplatino/metabolismo , Citocromos c/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptores de Morte Celular/metabolismo , Ligante Indutor de Apoptose Relacionado a TNF/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Humanos
4.
J Cell Sci ; 122(Pt 18): 3414-23, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19706689

RESUMO

Invadolysin is a metalloprotease conserved in many different organisms, previously shown to be essential in Drosophila with roles in cell division and cell migration. The gene seems to be ubiquitously expressed and four distinct splice variants have been identified in human cells but not in most other species examined. Immunofluorescent detection of human invadolysin in cultured cells reveals the protein to be associated with the surface of lipid droplets. By means of subcellular fractionation, we have independently confirmed the association of invadolysin with lipid droplets. We thus identify invadolysin as the first metalloprotease located on these dynamic organelles. In addition, analysis of larval fat-body morphological appearance and triglyceride levels in the Drosophila invadolysin mutant suggests that invadolysin plays a role in lipid storage or metabolism.


Assuntos
Sequência Conservada , Proteínas de Drosophila/metabolismo , Drosophila/enzimologia , Lipídeos/química , Metaloendopeptidases/metabolismo , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Animais , Linhagem Celular , Drosophila/citologia , Drosophila/efeitos dos fármacos , Proteínas de Drosophila/genética , Humanos , Metaloendopeptidases/genética , Ácido Oleico/farmacologia , Filogenia , Transporte Proteico/efeitos dos fármacos , Pseudópodes/efeitos dos fármacos , Pseudópodes/enzimologia
5.
J Cell Biol ; 220(7)2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33988679

RESUMO

Polarization of the actin cytoskeleton is vital for the collective migration of cells in vivo. During invasive border cell migration in Drosophila, actin polarization is directly controlled by the Hippo signaling complex, which resides at contacts between border cells in the cluster. Here, we identify, in a genetic screen for deubiquitinating enzymes involved in border cell migration, an essential role for nonstop/USP22 in the expression of Hippo pathway components expanded and merlin. Loss of nonstop function consequently leads to a redistribution of F-actin and the polarity determinant Crumbs, loss of polarized actin protrusions, and tumbling of the border cell cluster. Nonstop is a component of the Spt-Ada-Gcn5-acetyltransferase (SAGA) transcriptional coactivator complex, but SAGA's histone acetyltransferase module, which does not bind to expanded or merlin, is dispensable for migration. Taken together, our results uncover novel roles for SAGA-independent nonstop/USP22 in collective cell migration, which may help guide studies in other systems where USP22 is necessary for cell motility and invasion.


Assuntos
Citoesqueleto de Actina/genética , Proteínas de Drosophila/genética , Endopeptidases/genética , Histona Acetiltransferases/genética , Oogênese/genética , Animais , Movimento Celular/genética , Polaridade Celular/genética , Drosophila melanogaster/genética , Drosophila melanogaster/crescimento & desenvolvimento , Complexos Multiproteicos/genética , Oócitos/crescimento & desenvolvimento , Oócitos/metabolismo
7.
Genetics ; 172(2): 991-1008, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16272408

RESUMO

The condensin complex has been implicated in the higher-order organization of mitotic chromosomes in a host of model eukaryotes from yeasts to flies and vertebrates. Although chromosomes paradoxically appear to condense in condensin mutants, chromatids are not properly resolved, resulting in chromosome segregation defects during anaphase. We have examined the role of different condensin complex components in interphase chromatin function by examining the effects of various condensin mutations on position-effect variegation in Drosophila melanogaster. Surprisingly, most mutations affecting condensin proteins were often found to result in strong enhancement of variegation in contrast to what might be expected for proteins believed to compact the genome. This suggests either that the role of condensin proteins in interphase differs from their expected role in mitosis or that the way we envision condensin's activity needs to be modified to accommodate alternative possibilities.


Assuntos
Adenosina Trifosfatases/fisiologia , Proteínas de Ciclo Celular/fisiologia , Proteínas de Ligação a DNA/fisiologia , Drosophila melanogaster/genética , Interfase/fisiologia , Mitose/fisiologia , Complexos Multiproteicos/fisiologia , Adenosina Trifosfatases/genética , Sequência de Aminoácidos , Animais , Apoptose/genética , Apoptose/fisiologia , Proteínas de Ligação a DNA/genética , Drosophila melanogaster/embriologia , Olho , Expressão Gênica/fisiologia , Humanos , Interfase/genética , Larva/genética , Mitose/genética , Dados de Sequência Molecular , Complexos Multiproteicos/genética , Pigmentação/genética
8.
Proteins ; 63(3): 685-96, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16437548

RESUMO

The SMC (structural maintenance of chromosomes) proteins are a highly conserved and ubiquitous family of ATPases, found in nearly all living organisms examined, where they play crucial roles in transmission of the hereditary material. However, the extent to which efficient ATP hydrolysis is required for SMC function has been a matter of some debate. Here we investigate the potential functional significance of ATP binding and hydrolysis in different eukaryotic SMC proteins, both by comparing the conservation of conserved ATPase motifs and by exploring potential coevolution between associated domains. In this way, we have been able to account for the reduced requirement for ATPase activity in cohesin's SMC3 and demonstrate the greater apparent conservation requirements for such activity in condensin SMC proteins. Finally, we explore possible interactions between the SMC and non-SMC components of the condensin complex that are required for full condensin activity and may modulate ATPase activity in the holocomplex.


Assuntos
Adenosina Trifosfatases/química , Proteínas Cromossômicas não Histona/química , Evolução Molecular , Adenosina Trifosfatases/genética , Proteínas Cromossômicas não Histona/genética , Sequência Conservada , Bases de Dados de Proteínas , Estrutura Secundária de Proteína/genética
9.
Ocul Oncol Pathol ; 1(3): 190-9, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27172095

RESUMO

Drosophila has made many contributions to our understanding of cancer genes and mechanisms that have subsequently been validated in mammals. Despite anatomical differences between fly and human eyes, flies offer a tractable genetic model in which to dissect the functional importance of genetic lesions found to be affected in human ocular tumors. Here, we discuss different approaches for using Drosophila as a model for ocular cancer and how studies on ocular cancer genes in flies have begun to reveal potential strategies for therapeutic intervention. We also discuss recent developments in the use of Drosophila for drug discovery, which is coming to the fore as Drosophila models are becoming tailored to study tumor types found in the clinic.

10.
Open Biol ; 2(1): 110031, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22645656

RESUMO

Multi-cellular organisms need to successfully link cell growth and metabolism to environmental cues during development. Insulin receptor-target of rapamycin (InR-TOR) signalling is a highly conserved pathway that mediates this link. Herein, we describe poly, an essential gene in Drosophila that mediates InR-TOR signalling. Loss of poly results in lethality at the third instar larval stage, but only after a stage of extreme larval longevity. Analysis in Drosophila demonstrates that Poly and InR interact and that poly mutants show an overall decrease in InR-TOR signalling, as evidenced by decreased phosphorylation of Akt, S6K and 4E-BP. Metabolism is altered in poly mutants, as revealed by microarray expression analysis and a decreased triglyceride : protein ratio in mutant animals. Intriguingly, the cellular distribution of Poly is dependent on insulin stimulation in both Drosophila and human cells, moving to the nucleus with insulin treatment, consistent with a role in InR-TOR signalling. Together, these data reveal that Poly is a novel, conserved (from flies to humans) mediator of InR signalling that promotes an increase in cell growth and metabolism. Furthermore, homology to small subunits of Elongator demonstrates a novel, unexpected role for this complex in insulin signalling.


Assuntos
Antibacterianos/farmacologia , Proteínas de Drosophila/metabolismo , Receptores Proteína Tirosina Quinases/metabolismo , Ribonucleoproteínas/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster , Células HeLa , Humanos , Receptores Proteína Tirosina Quinases/genética , Ribonucleoproteínas/genética , Transdução de Sinais/genética , Serina-Treonina Quinases TOR/genética
11.
J Cell Sci ; 118(Pt 11): 2529-43, 2005 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-15923665

RESUMO

The precise mechanism of chromosome condensation and decondensation remains a mystery, despite progress over the last 20 years aimed at identifying components essential to the mitotic compaction of the genome. In this study, we analyse the localization and role of the CAP-D2 non-SMC condensin subunit and its effect on the stability of the condensin complex. We demonstrate that a condensin complex exists in Drosophila embryos, containing CAP-D2, the anticipated SMC2 and SMC4 proteins, the CAP-H/Barren and CAP-G (non-SMC) subunits. We show that CAP-D2 is a nuclear protein throughout interphase, increasing in level during S phase, present on chromosome axes in mitosis, and still present on chromosomes as they start to decondense late in mitosis. We analysed the consequences of CAP-D2 loss after dsRNA-mediated interference, and discovered that the protein is essential for chromosome arm and centromere resolution. The loss of CAP-D2 after RNAi has additional downstream consequences on the stability of CAP-H, the localization of DNA topoisomerase II and other condensin subunits, and chromosome segregation. Finally, we discovered that even after interfering with two components important for chromosome architecture (DNA topoisomerase II and condensin), chromosomes were still able to compact, paving the way for the identification of further components or activities required for this essential process.


Assuntos
Adenosina Trifosfatases/metabolismo , Centrômero/metabolismo , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Complexos Multiproteicos/metabolismo , Animais , Linhagem Celular , Cromátides/genética , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Embrião não Mamífero/citologia , Embrião não Mamífero/metabolismo , Complexos Multiproteicos/genética , Interferência de RNA
12.
Mol Biol Evol ; 21(2): 332-47, 2004 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-14660695

RESUMO

The SMC proteins are found in nearly all living organisms examined, where they play crucial roles in mitotic chromosome dynamics, regulation of gene expression, and DNA repair. We have explored the phylogenetic relationships of SMC proteins from prokaryotes and eukaryotes, as well as their relationship to similar ABC ATPases, using maximum-likelihood analyses. We have also investigated the coevolution of different domains of eukaryotic SMC proteins and attempted to account for the evolutionary patterns we have observed in terms of available structural data. Based on our analyses, we propose that each of the six eukaryotic SMC subfamilies originated through a series of ancient gene duplication events, with the condensins evolving more rapidly than the cohesins. In addition, we show that the SMC5 and SMC6 subfamily members have evolved comparatively rapidly and suggest that these proteins may perform redundant functions in higher eukaryotes. Finally, we propose a possible structure for the SMC5/SMC6 heterodimer based on patterns of coevolution.


Assuntos
Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Evolução Molecular , Filogenia , Transportadores de Cassetes de Ligação de ATP/genética , Adenosina Trifosfatases/genética , Animais , Códon/genética , Dano ao DNA/genética , Reparo do DNA , Células Eucarióticas , Duplicação Gênica , Regulação da Expressão Gênica , Humanos , Mitose/genética , Células Procarióticas , Estrutura Terciária de Proteína/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA