RESUMO
Tobacco mosaic virus (TMV) has served as a model organism for pathbreaking work in plant pathology, virology, biochemistry and applied genetics for more than a century. We were intrigued by a photograph published in Phytopathology in 1934 showing that Tabasco pepper plants responded to TMV infection with localized necrotic lesions, followed by abscission of the inoculated leaves. This dramatic outcome of a biological response to infection observed by Francis O. Holmes, a virologist at the Rockefeller Institute for Medical Research, was used to score plants for resistance to TMV infection. Our objective was to gain a better understanding of early to mid-twentieth century ideas of genetic resistance to viruses in crop plants. We investigated Holmes' observation as a practical exercise in reworking an experiment, having been inspired by Pamela Smith's innovative Making and Knowing Project. We had a great deal of difficulty replicating Holmes' experiment, finding that biological materials and experimental customs change over time, in ways that ideas do not. Using complementary tools plus careful study and interpretation of the original text and figures, we were able to rework, yet only partially replicate, this experiment. Reading peer-reviewed manuscripts that cited Holmes' 1934 report provided an additional level of insight into the interpretation and replication of this work in the decades that followed. From this, we touch on how experimental reworking can inform our strategies to address the reproducibility "crisis" in twenty-first century science.
Assuntos
Vírus do Mosaico do Tabaco , Plantas , Reprodutibilidade dos Testes , NicotianaRESUMO
Seed maceration and contamination with mycotoxin fumonisin inflicted by Fusarium verticillioides is a major disease concern for maize producers worldwide. Meta-analyses of quantitative trait loci for Fusarium ear rot resistance uncovered several ethylene (ET) biosynthesis and signaling genes within them, implicating ET in maize interactions with F. verticillioides. We tested this hypothesis using maize knockout mutants of the 1-aminocyclopropane-1-carboxylate (ACC) synthases ZmACS2 and ZmACS6. Infected wild-type seed emitted five-fold higher ET levels compared with controls, whereas ET was abolished in the acs2 and acs6 single and double mutants. The mutants supported reduced fungal biomass, conidia, and fumonisin content. Normal susceptibility was restored in the acs6 mutant with exogenous treatment of ET precursor ACC. Subsequently, we showed that fungal G-protein signaling is required for virulence via induction of maize-produced ET. F. verticillioides Gß subunit and two regulators of G-protein signaling mutants displayed reduced seed colonization and decreased ET levels. These defects were rescued by exogenous application of ACC. We concluded that pathogen-induced ET facilitates F. verticillioides colonization of seed, and, in turn, host ET production is manipulated via G-protein signaling of F. verticillioides to facilitate pathogenesis.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.
Assuntos
Fumonisinas , Fusarium , Etilenos , Proteínas de Ligação ao GTP , Virulência , Zea maysRESUMO
The present CRISPR/Cas9 gene editing dogma for single guide RNA (sgRNA) delivery is based on the premise that 5'-and 3'-nucleotide overhangs negate Cas9/sgRNA catalytic activity in vivo. This has led to engineering strategies designed to either avoid or remove extraneous nucleotides at the 5' and 3' termini of sgRNAs. Previously, we used a Tobacco mosaic virus viral vector to express both GFP and a sgRNA from a single virus-derived mRNA in Nicotiana benthamiana This vector yielded high levels of GFP and catalytically active sgRNAs. Here, in an effort to understand the biochemical interactions of this result, we used in vitro assays to demonstrate that nucleotide overhangs 5', but not 3', proximal to the sgRNA do in fact inactivate Cas9 catalytic activity at the specified target site. Next we showed that in planta sgRNAs bound to Cas9 are devoid of the expected 5' overhangs transcribed by the virus. Furthermore, when a plant nuclear promoter was used for expression of the GFP-sgRNA fusion transcript, it also produced indels when delivered with Cas9. These results reveal that 5' auto-processing of progenitor sgRNAs occurs natively in plants. Toward a possible mechanism for the perceived auto-processing, we found, using in vitro-generated RNAs and those isolated from plants, that the 5' to 3' exoribonuclease XRN1 can degrade elongated progenitor sgRNAs, whereas the mature sgRNA end products are resistant. Comparisons with other studies suggest that sgRNA auto-processing may be a phenomenon not unique to plants, but present in other eukaryotes as well.
Assuntos
Catálise , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Edição de Genes/métodos , Nicotiana/genética , Precursores de RNA/genética , RNA Guia de Cinetoplastídeos , Ativação Transcricional/genéticaRESUMO
Development of CRISPR/Cas9 transient gene editing screening tools in plant biology has been hindered by difficulty of delivering high quantities of biologically active single guide RNAs (sgRNAs). Furthermore, it has been largely accepted that in vivo generated sgRNAs need to be devoid of extraneous nucleotides, which has limited sgRNA expression by delivery vectors. Here, we increased cellular concentrations of sgRNA by transiently delivering sgRNAs using a Tobacco mosaic virus-derived vector (TRBO) designed with 5' and 3' sgRNA proximal nucleotide-processing capabilities. To demonstrate proof-of-principle, we used the TRBO-sgRNA delivery platform to target GFP in Nicotiana benthamiana (16c) plants, and gene editing was accompanied by loss of GFP expression. Surprisingly, indel (insertions and deletions) percentages averaged nearly 70% within 7 d postinoculation using the TRBO-sgRNA constructs, which retained 5' nucleotide overhangs. In contrast, and in accordance with current models, in vitro Cas9 cleavage assays only edited DNA when 5' sgRNA nucleotide overhangs were removed, suggesting a novel processing mechanism is occurring in planta. Since the Cas9/TRBO-sgRNA platform demonstrated sgRNA flexibility, we targeted the N. benthamiana NbAGO1 paralogs with one sgRNA and also multiplexed two sgRNAs using a single TRBO construct, resulting in indels in three genes. TRBO-mediated expression of an RNA transcript consisting of an sgRNA adjoining a GFP protein coding region produced indels and viral-based GFP overexpression. In conclusion, multiplexed delivery of sgRNAs using the TRBO system offers flexibility for gene expression and editing and uncovered novel aspects of CRISPR/Cas9 biology.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes/métodos , Vírus do Mosaico do Tabaco , NicotianaRESUMO
With the increasing availability of single-cell transcriptomes, RNA signatures offer a promising basis for targeting living cells. Molecular RNA sensors would enable the study of and therapeutic interventions for specific cell types/states in diverse contexts, particularly in human patients and non-model organisms. Here we describe a modular, programmable system for live RNA sensing using adenosine deaminases acting on RNA (RADAR). We validate, and then expand, our basic design, characterize its performance, and analyze its compatibility with human and mouse transcriptomes. We identify strategies to boost output levels and improve the dynamic range. Additionally, we show that RADAR enables compact AND logic. In addition to responding to transcript levels, RADAR can distinguish disease-relevant sequence alterations of transcript identities, such as point mutations and fusions. Finally, we demonstrate that RADAR is a self-contained system with the potential to function in diverse organisms.
Assuntos
Edição de RNA , RNA , Animais , Humanos , Camundongos , RNA/genética , Edição de RNA/genética , Adenosina Desaminase/metabolismo , Sobrevivência CelularRESUMO
We report on further development of the agroinfiltratable Tobacco mosaic virus (TMV)-based overexpression (TRBO) vector to deliver CRISPR/Cas9 components into plants. First, production of a Cas9 (HcoCas9) protein from a binary plasmid increased when co-expressed in presence of suppressors of gene silencing, such as the TMV 126-kDa replicase or the Tomato bushy stunt virus P19 protein. Such suppressor-generated elevated levels of Cas9 expression translated to efficient gene editing mediated by TRBO-G-3'gGFP expressing GFP and also a single guide RNA targeting the mgfp5 gene in the Nicotiana benthamiana GFP-expressing line 16c. Furthermore, HcoCas9 encoding RNA, a large cargo insert of 4.2 kb, was expressed from TRBO-HcoCas9 to yield Cas9 protein again at higher levels upon co-expression with P19. Likewise, co-delivery of TRBO-HcoCas9 and TRBO-G-3'gGFP in the presence of P19 also resulted in elevated levels percentages of indels (insertions and deletions). These data also revealed an age-related phenomenon in plants whereby the RNA suppressor P19 had more of an effect in older plants. Lastly, we used a single TRBO vector to express both Cas9 and a sgRNA. Taken together, we suggest that viral RNA suppressors could be used for further optimization of single viral vector delivery of CRISPR gene editing parts.
Assuntos
Sistemas CRISPR-Cas , Edição de Genes , Inativação Gênica , Vetores Genéticos/genética , Interferência de RNA , RNA Guia de Cinetoplastídeos , Vírus do Mosaico do Tabaco/genética , Proteína 9 Associada à CRISPR/metabolismo , Expressão Gênica , Ordem dos Genes , Técnicas de Transferência de Genes , Engenharia Genética , Plantas Geneticamente Modificadas , Plasmídeos/genética , Proteínas Virais/genética , Proteínas Virais/metabolismoRESUMO
Plant viruses were first implemented as heterologous gene expression vectors more than three decades ago. Since then, the methodology for their use has varied, but we propose it was the merging of technologies with virology tools, which occurred in three defined steps discussed here, that has driven viral vector applications to date. The first was the advent of molecular biology and reverse genetics, which enabled the cloning and manipulation of viral genomes to express genes of interest (vectors 1.0). The second stems from the discovery of RNA silencing and the development of high-throughput sequencing technologies that allowed the convenient and widespread use of virus-induced gene silencing (vectors 2.0). Here, we briefly review the events that led to these applications, but this treatise mainly concentrates on the emerging versatility of gene-editing tools, which has enabled the emergence of virus-delivered genetic queries for functional genomics and virology (vectors 3.0).