Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
RSC Adv ; 10(16): 9623-9632, 2020 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35497238

RESUMO

The cationic ring-opening polymerization of acetals is prone to cyclization of the polymer chains. This is also the case for the polymerization of 1,3-dioxolane. Literature states that this cyclization can be reduced by applying the Active Monomer mechanism, at least if no competition with the Active Chain End mechanism occurs. In this work, a detailed characterization of the different distributions resulting from the cationic ring-opening polymerization of 1,3-dioxolane via the Active Monomer mechanism is made by a combination of gel permeation chromatography, 1H NMR, and for the first time by matrix assisted laser desorption/ionization time of flight mass spectrometry. The influence of monomer addition speed, catalyst to initiator ratio and solvent were studied on both kinetics and composition of the product. Furthermore, it was found that increasing the conversion and monomer to initiator ratios leads to an increased amount of cyclic structures and to broader distributions, in correspondence with the Jacobson-Stockmayer theory. Furthermore, ion trapping experiments using 31P NMR provide insights into the actual reaction mechanism. Finally, purification of the products after the reactions led to a reduction of the cyclic fraction.

2.
Acta Biomater ; 79: 60-82, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30165203

RESUMO

Elastin and collagen are the two main components of elastic tissues and provide the tissue with elasticity and mechanical strength, respectively. Whereas collagen is adequately produced in vitro, production of elastin in tissue-engineered constructs is often inadequate when engineering elastic tissues. Therefore, elasticity has to be artificially introduced into tissue-engineered scaffolds. The elasticity of scaffold materials can be attributed to either natural sources, when native elastin or recombinant techniques are used to provide natural polymers, or synthetic sources, when polymers are synthesized. While synthetic elastomers often lack the biocompatibility needed for tissue engineering applications, the production of natural materials in adequate amounts or with proper mechanical strength remains a challenge. However, combining natural and synthetic materials to create hybrid components could overcome these issues. This review explains the synthesis, mechanical properties, and structure of native elastin as well as the theories on how this extracellular matrix component provides elasticity in vivo. Furthermore, current methods, ranging from proteins and synthetic polymers to hybrid structures that are being investigated for providing elasticity to tissue engineering constructs, are comprehensively discussed. STATEMENT OF SIGNIFICANCE: Tissue engineered scaffolds are being developed as treatment options for malfunctioning tissues throughout the body. It is essential that the scaffold is a close mimic of the native tissue with regards to both mechanical and biological functionalities. Therefore, the production of elastic scaffolds is of key importance to fabricate tissue engineered scaffolds of the elastic tissues such as heart valves and blood vessels. Combining naturally derived and synthetic materials to reach this goal proves to be an interesting area where a highly tunable material that unites mechanical and biological functionalities can be obtained.


Assuntos
Elasticidade , Polímeros/química , Engenharia Tecidual/métodos , Animais , Elastina/biossíntese , Elastina/química , Humanos , Polímeros/síntese química , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA