Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Nanomedicine ; 24: 102145, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31857183

RESUMO

An innovative delivery system based on bacteriophages-loaded alginate-nanohydroxyapatite hydrogel was developed as a multifunctional approach for local tissue regeneration and infection prevention and control. Bacteriophages were efficiently encapsulated, without jeopardizing phage viability and functionality, nor affecting hydrogel morphology and chemical composition. Bacteriophage delivery occurred by swelling-disintegration-degradation process of the alginate structure and was influenced by environmental pH. Good tissue response was observed following the implantation of bacteriophages-loaded hydrogels, sustaining their biosafety profile. Bacteriophages-loaded hydrogels did not affect osteoblastic cells' proliferation and morphology. A strong osteogenic and mineralization response was promoted through the implantation of hydrogels system with nanohydroxyapatite. Lastly, bacteriophages-loaded hydrogel showed excellent antimicrobial activity inhibiting the attachment and colonization of multidrug-resistant E. faecalis surrounding and within femoral tissues. This new local delivery approach could be a promising approach to prevent and control bacterial contamination during implantation and bone integration.


Assuntos
Alginatos/química , Bacteriófagos/química , Hidrogéis/química , Anti-Infecciosos/química , Bacteriófagos/fisiologia , Proliferação de Células/efeitos dos fármacos , Concentração de Íons de Hidrogênio , Engenharia Tecidual , Alicerces Teciduais/química
2.
Altern Lab Anim ; 48(2): 58-69, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32614643

RESUMO

Prostate cancer is one of the most commonly diagnosed cancers worldwide, particularly in elderly populations. To mitigate the expected increase in prostate cancer-related morbidity and mortality as a result of an expanding aged population, safer and more effective therapeutics are required. To this end, plenty of research is focusing on the mechanisms underlying cancer initiation and development, the metastatic process and on the discovery of new therapies. While animal models are used (mainly rats and mice) for the study of prostate cancer, alternative models and methods are increasingly being considered to replace, or at least reduce, the number of animals used in this particular field of research. In this review, we cover some of the alternative models that are currently available for use in the study of prostate cancer, including: mathematical models; 2-D and 3-D cell cultures; microfluidic devices; the chicken egg chorioallantoic membrane-based model; and zebrafish embryo-based models. The main advantages and limitations, as well as some examples of applications, are given for each type of model. According to our analysis, immortalised cell lines are still the most commonly used models in the field of prostate cancer research. However, the use of alternative models for prostate cancer research will likely become more prevalent in the coming years partly because of the increasing societal pressure to reduce the numbers of laboratory animals. In this context, the development and dissemination of effective non-animal alternative models assumes particular relevance and will be instrumental in leveraging their success. Taking these perspectives into account, we believe that technological advances will lead to more effective cell culture systems, namely 3-D cultures or organ-on-a-chip devices, which can be used to replace animal-based models in prostate cancer research.


Assuntos
Neoplasias da Próstata , Animais , Humanos , Masculino , Modelos Animais , Pesquisa
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA