Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Hum Mol Genet ; 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38710523

RESUMO

Duchenne Muscular Dystrophy (DMD) is a progressive and fatal neuromuscular disease. Cycles of myofibre degeneration and regeneration are hallmarks of the disease where immune cells infiltrate to repair damaged skeletal muscle. Benfotiamine is a lipid soluble precursor to thiamine, shown clinically to reduce inflammation in diabetic related complications. We assessed whether benfotiamine administration could reduce inflammation related dystrophic pathology. Benfotiamine (10 mg/kg/day) was fed to male mdx mice (n = 7) for 15 weeks from 4 weeks of age. Treated mice had an increased growth weight (5-7 weeks) and myofibre size at treatment completion. Markers of dystrophic pathology (area of damaged necrotic tissue, central nuclei) were reduced in benfotiamine mdx quadriceps. Grip strength was increased and improved exercise capacity was found in mdx treated with benfotiamine for 12 weeks, before being placed into individual cages and allowed access to an exercise wheel for 3 weeks. Global gene expression profiling (RNAseq) in the gastrocnemius revealed benfotiamine regulated signalling pathways relevant to dystrophic pathology (Inflammatory Response, Myogenesis) and fibrotic gene markers (Col1a1, Col1a2, Col4a5, Col5a2, Col6a2, Col6a2, Col6a3, Lum) towards wildtype levels. In addition, we observed a reduction in gene expression of inflammatory gene markers in the quadriceps (Emr1, Cd163, Cd4, Cd8, Ifng). Overall, these data suggest that benfotiamine reduces dystrophic pathology by acting on inflammatory and fibrotic gene markers and signalling pathways. Given benfotiamine's excellent safety profile and current clinical use, it could be used in combination with glucocorticoids to treat DMD patients.

2.
Hum Mol Genet ; 29(3): 353-368, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31696230

RESUMO

Duchenne muscular dystrophy (DMD) is a lethal muscle wasting disorder caused by mutations in the DMD gene that leads to the absence or severe reduction of dystrophin protein in muscle. The mdx mouse, also dystrophin deficient, is the model most widely used to study the pathology and test potential therapies, but the phenotype is milder than human DMD. This limits the magnitude and range of histological damage parameters and molecular changes that can be measured in pre-clinical drug testing. We used 3 weeks of voluntary wheel running to exacerbate the mdx phenotype. In mdx mice, voluntary exercise increased the amount of damaged necrotic tissue and macrophage infiltration. Global gene expression profiling revealed that exercise induced additional and larger gene expression changes in mdx mice and the pathways most impacted by exercise were all related to immune function or cell-extracellular matrix (ECM) interactions. When we compared the matrisome and inflammation genes that were dysregulated in mdx with those commonly differentially expressed in DMD, we found the exercised mdx molecular signature more closely resembled that of DMD. These gene expression changes in the exercised mdx model thus provide more scope to assess the effects of pre-clinical treatments. Our gene profiling comparisons also highlighted upregulation of ECM proteins involved in innate immunity pathways, proteases that can release them, downstream receptors and signaling molecules in exercised mdx and DMD, suggesting that the ECM could be a major source of pro-inflammatory molecules that trigger and maintain the immune response in dystrophic muscle.


Assuntos
Proteínas da Matriz Extracelular/metabolismo , Regulação da Expressão Gênica , Imunidade/imunologia , Inflamação/patologia , Atividade Motora , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Animais , Proteínas da Matriz Extracelular/genética , Perfilação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/imunologia , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/imunologia , Distrofia Muscular de Duchenne/metabolismo
3.
Molecules ; 26(4)2021 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-33561994

RESUMO

Duchenne muscular dystrophy (DMD) is a progressive fatal neuromuscular disorder with no cure. Therapies to restore dystrophin deficiency have been approved in some jurisdictions but long-term effectiveness is yet to be established. There is a need to develop alternative strategies to treat DMD. Resveratrol is a nutraceutical with anti-inflammatory properties. Previous studies have shown high doses (100-400 mg/kg bodyweight/day) benefit mdx mice. We treated 4-week-old mdx and wildtype mice with a lower dose of resveratrol (5 mg/kg bodyweight/day) for 15 weeks. Voluntary exercise was used to test if a lower dosage than previously tested could reduce exercise-induced damage where a greater inflammatory infiltrate is present. We found resveratrol promoted skeletal muscle hypertrophy in wildtype mice. In dystrophic muscle, resveratrol reduced exercise-induced muscle necrosis. Gene expression of immune cell markers, CD86 and CD163 were reduced; however, signalling targets associated with resveratrol's mechanism of action including Sirt1 and NF-κB were unchanged. In conclusion, a lower dose of resveratrol compared to the dosage used by other studies reduced necrosis and gene expression of inflammatory cell markers in dystrophic muscle suggesting it as a therapeutic candidate for treating DMD.


Assuntos
Regulação da Expressão Gênica/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Resveratrol/farmacologia , Animais , Biomarcadores/metabolismo , Hipertrofia/induzido quimicamente , Hipertrofia/metabolismo , Hipertrofia/patologia , Inflamação/metabolismo , Camundongos , Necrose/tratamento farmacológico , Resveratrol/uso terapêutico
4.
Stem Cell Res ; 75: 103313, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38277710

RESUMO

We used gene editing to introduce DNA sequences encoding the tdTomato fluorescent protein into the α -skeletal actin 1 (ACTA1) locus to develop an ACTA1-tdTomato induced pluripotent stem cell reporter line for monitoring differentiation of skeletal muscle. This cell line will be used to better understand skeletal muscle maturation and development in vitro as well as provide a useful tool for drug screening and the evaluation of novel therapeutics for the treatment of skeletal muscle disease.


Assuntos
Sistemas CRISPR-Cas , Células-Tronco Pluripotentes Induzidas , Proteína Vermelha Fluorescente , Humanos , Sistemas CRISPR-Cas/genética , Células-Tronco Pluripotentes Induzidas/metabolismo , Actinas/genética , Actinas/metabolismo , Músculo Esquelético/metabolismo
5.
Biomedicines ; 10(3)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35327337

RESUMO

The lack of dystrophin in Duchenne muscular dystrophy (DMD) results in membrane fragility resulting in contraction-induced muscle damage and subsequent inflammation. The impact of inflammation is profound, resulting in fibrosis of skeletal muscle, the diaphragm and heart, which contributes to muscle weakness, reduced quality of life and premature death. To date, the innate immune system has been the major focus in individuals with DMD, and our understanding of the adaptive immune system, specifically T cells, is limited. Targeting the immune system has been the focus of multiple clinical trials for DMD and is considered a vital step in the development of better treatments. However, we must first have a complete picture of the involvement of the immune systems in dystrophic muscle disease to better understand how inflammation influences disease progression and severity. This review focuses on the role of T cells in DMD, highlighting the importance of looking beyond skeletal muscle when considering how the loss of dystrophin impacts disease progression. Finally, we propose that targeting T cells is a potential novel therapeutic in the treatment of DMD.

6.
Equine Vet J ; 53(4): 710-717, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33001503

RESUMO

BACKGROUND: As myosin heavy chain (MyHC) profile of muscle fibres is heavily influenced by neural input, changes in MyHC expression are expected in horses clinically affected with recurrent laryngeal neuropathy (RLN) yet, this has not been thoroughly investigated. OBJECTIVES: To describe the changes in MyHC and fibre diameter in left cricoarytenoideus dorsalis (L-CAD) muscle of horses with clinical signs of RLN. STUDY DESIGN: Observational cohort study. METHODS: Immunohistochemistry was used to assess the MyHC-based fibre-type proportion, size and grouping in the L-CAD of 10 Thoroughbred horses, five clinically affected with RLN and five unaffected controls based on resting endoscopic examination. The Mann-Whitney U test was used to compare the two groups. RESULTS: Compared to controls (of mean age 3.0 ± 1.7 years) which only expressed type I, IIA and IIX MyHC, the L-CAD of affected horses (of mean age 2.8 ± 0.8 years) had obvious fibre-type grouping, and despite apparent compensatory hypertrophy of a small number of fibres, a decrease in overall fibre diameter (median difference -35.2 µm, 95% CI -47.4 to -7.9, P = .02) and diameter of type IIA fibres (median difference -46.8 µm, 95% CI -52.1 to -5.0, P = .03) was observed. Anti-fast MyHC (MY32) cross-immunoreacted with embryonic-MyHC. Whereas MY32-positive fibres were identified as type IIX in controls, in affected horses these fibres were less than 50 µm diameter with internal nuclei and were MYH3-positive for embryonic myosin indicating depletion of type IIX fibres, yet active regeneration and fibre renewal. MAIN LIMITATIONS: Small sample size that did not include subclinical cases. Fibre size and appearance rather than staining colour were relied upon to differentiate embryonic from type IIX MyHC. CONCLUSIONS: Horses clinically affected with RLN have overall atrophy of fibres, loss of IIX fibres and expression of embryonic myosin indicating regenerative capacity. Despite hypertrophy of some remaining fibres, the overall decline in the bulk of fibres, including those most fatigue-resistant, may be the critical change that results in failure to maintain arytenoid abduction during exercise although direct comparison to subclinical cases is needed to confirm this.


Assuntos
Doenças dos Cavalos , Doenças do Sistema Nervoso Periférico , Animais , Cavalos , Imuno-Histoquímica , Músculos Laríngeos , Fibras Musculares Esqueléticas , Músculo Esquelético , Cadeias Pesadas de Miosina , Doenças do Sistema Nervoso Periférico/veterinária
7.
Stem Cell Res ; 54: 102429, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34157503

RESUMO

To produce an in vitro model of nemaline myopathy, we reprogrammed the peripheral blood mononuclear cells (PBMCs) of a patient with a heterozygous p.Gly148Asp mutation in exon 3 of the ACTA1 gene to iPSCs. Using CRISPR/Cas9 gene editing we corrected the mutation to generate an isogenic control line. Both the mutant and control show a normal karyotype, express pluripotency markers and could differentiae into the three cell states that represent embryonic germ layers (endoderm, mesoderm and neuroectoderm) and the dermomyotome (precursor of skeletal muscle). When differentiated these cell lines will be used to explore disease mechanisms and evaluate novel therapeutics.


Assuntos
Células-Tronco Pluripotentes Induzidas , Miopatias da Nemalina , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Edição de Genes , Humanos , Leucócitos Mononucleares , Mutação , Miopatias da Nemalina/genética
8.
Endocrinology ; 159(3): 1339-1351, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29370381

RESUMO

Grb10 is an adaptor-type signaling protein most highly expressed in tissues involved in insulin action and glucose metabolism, such as muscle, pancreas, and adipose. Germline deletion of Grb10 in mice creates a phenotype with larger muscles and improved glucose homeostasis. However, it has not been determined whether Grb10 ablation specifically in muscle is sufficient to induce hypermuscularity or affect whole body glucose metabolism. In this study we generated muscle-specific Grb10-deficient mice (Grb10-mKO) by crossing Grb10flox/flox mice with mice expressing Cre recombinase under control of the human α-skeletal actin promoter. One-year-old Grb10-mKO mice had enlarged muscles, with greater cross-sectional area of fibers compared with wild-type (WT) mice. This degree of hypermuscularity did not affect whole body glucose homeostasis under basal conditions. However, hyperinsulinemic/euglycemic clamp studies revealed that Grb10-mKO mice had greater glucose uptake into muscles compared with WT mice. Insulin signaling was increased at the level of phospho-Akt in muscle of Grb10-mKO mice compared with WT mice, consistent with a role of Grb10 as a modulator of proximal insulin receptor signaling. We conclude that ablation of Grb10 in muscle is sufficient to affect muscle size and metabolism, supporting an important role for this protein in growth and metabolic pathways.


Assuntos
Proteína Adaptadora GRB10/deficiência , Proteína Adaptadora GRB10/fisiologia , Glucose/metabolismo , Músculo Esquelético/anatomia & histologia , Músculo Esquelético/metabolismo , Animais , Glicemia/análise , Cruzamentos Genéticos , Feminino , Proteína Adaptadora GRB10/genética , Deleção de Genes , Técnica Clamp de Glucose , Homeostase , Insulina/sangue , Insulina/farmacologia , Integrases/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout
9.
Mol Biol Cell ; 29(15): 1839-1855, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29846135

RESUMO

Mouse models have shown that a disintegrin A metalloprotease 12 (ADAM12) is implicated during adipogenesis; the molecular pathways are not well understood. Stealth RNA interference was used to knock down ADAM12 in 3T3-L1 cells. Using gene profiling and metabolic enzymatic markers, we have identified signaling pathways ADAM12 impacts upon during proliferation, differentiation, and maturation of adipocytes. ADAM12 reduced cell numbers in proliferating preadipocytes, delayed differentiation of preadipocytes to adipocytes, and increased lipid accumulation in mature adipocytes. The pathway most affected by ADAM12 knockdown was regulation of insulin-like growth factor (IGF) activity by insulin-like growth factor binding proteins (IGFBPs); ADAM12 is known to cleave IGFBP3 and IGFBP5. The IGF/mTOR signaling pathway was down-regulated, supporting a role for ADAM12 in the IGFBP/IGF/mTOR-growth pathway. PPARγ signaling was also down-regulated by ADAM12 knockdown. Gene ontology (GO) analysis revealed that the extracellular matrix was the cellular compartment most impacted. Filtering for matrisome genes, connective tissue growth factor ( Ctgf) was up-regulated. CTGF and IGBP3 can interact with PPARγ to hinder its regulation. Increased expression of these molecules could have influenced PPARγ signaling reducing differentiation and an imbalance of lipids. We believe ADAM12 regulates cell proliferation of preadipocytes through IGFBP/IGF/mTOR signaling and delays differentiation through altered PPAR signaling to cause an imbalance of lipids within mature adipocytes.


Assuntos
Proteína ADAM12/metabolismo , Adipogenia , Diferenciação Celular , Técnicas de Silenciamento de Genes , Metabolismo dos Lipídeos , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Animais , Biomarcadores/metabolismo , Contagem de Células , Forma Celular , Análise por Conglomerados , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Ontologia Genética , Camundongos , Modelos Biológicos , Reprodutibilidade dos Testes , Transdução de Sinais
10.
Nutrients ; 8(11)2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27834844

RESUMO

In recent years, complementary and alternative medicine has become increasingly popular. This trend has not escaped the Duchenne Muscular Dystrophy community with one study showing that 80% of caregivers have provided their Duchenne patients with complementary and alternative medicine in conjunction with their traditional treatments. These statistics are concerning given that many supplements are taken based on purely "anecdotal" evidence. Many nutraceuticals are thought to have anti-inflammatory or anti-oxidant effects. Given that dystrophic pathology is exacerbated by inflammation and oxidative stress these nutraceuticals could have some therapeutic benefit for Duchenne Muscular Dystrophy (DMD). This review gathers and evaluates the peer-reviewed scientific studies that have used nutraceuticals in clinical or pre-clinical trials for DMD and thus separates the credible from the conjecture.


Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Antioxidantes/uso terapêutico , Suplementos Nutricionais , Medicina Baseada em Evidências , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/dietoterapia , Animais , Anti-Inflamatórios não Esteroides/efeitos adversos , Antioxidantes/efeitos adversos , Pesquisa Biomédica/métodos , Pesquisa Biomédica/tendências , Terapia Combinada/efeitos adversos , Suplementos Nutricionais/efeitos adversos , Humanos , Músculo Esquelético/fisiopatologia , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/fisiopatologia , Distrofia Muscular de Duchenne/terapia , Revisão da Pesquisa por Pares/métodos , Revisão da Pesquisa por Pares/tendências , Reprodutibilidade dos Testes , Índice de Gravidade de Doença
11.
PLoS One ; 10(4): e0124468, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25875203

RESUMO

Muscling in cattle is largely influenced by genetic background, ultimately affecting beef yield and is of major interest to the beef industry. This investigation aimed to determine whether primary skeletal muscle cells isolated from different breeds of cattle with a varying genetic potential for muscling differ in their myogenic proliferative capacity. Primary skeletal muscle cells were isolated and cultured from the Longissimus muscle (LM) of 6 month old Angus, Hereford and Wagyu X Angus cattle. Cells were assessed for rate of proliferation and gene expression of PAX7, MYOD, MYF5, and MYOG. Proliferation rates were found to differ between breeds of cattle whereby myoblasts from Angus cattle were found to proliferate at a greater rate than those of Hereford and Wagyu X Angus during early stages of growth (5-20 hours in culture) in vitro (P < 0.05). The proliferation rates of myoblasts during early stages of culture in vitro were also found to be positively related to the liveweight and carcase weight of cattle (P < 0.05). Gene expression of MYF5 was also found to be significantly down-regulated in WagyuX compared with Angus cattle (P < 0.05). These findings suggest that early events during myogenesis are important for determining liveweight and caracase weights in cattle.


Assuntos
Bovinos/fisiologia , Proliferação de Células , Desenvolvimento Muscular , Músculo Esquelético/citologia , Mioblastos/citologia , Animais , Peso Corporal , Cruzamento , Bovinos/genética , Células Cultivadas , Regulação da Expressão Gênica , Masculino , Músculo Esquelético/fisiologia , Mioblastos/metabolismo , Mioblastos Esqueléticos/citologia , Mioblastos Esqueléticos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA