Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(50): e2212195119, 2022 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-36469762

RESUMO

Biological supramolecular assemblies, such as phospholipid bilayer membranes, have been used to demonstrate signal processing via short-term synaptic plasticity (STP) in the form of paired pulse facilitation and depression, emulating the brain's efficiency and flexible cognitive capabilities. However, STP memory in lipid bilayers is volatile and cannot be stored or accessed over relevant periods of time, a key requirement for learning. Using droplet interface bilayers (DIBs) composed of lipids, water and hexadecane, and an electrical stimulation training protocol featuring repetitive sinusoidal voltage cycling, we show that DIBs displaying memcapacitive properties can also exhibit persistent synaptic plasticity in the form of long-term potentiation (LTP) associated with capacitive energy storage in the phospholipid bilayer. The time scales for the physical changes associated with the LTP range between minutes and hours, and are substantially longer than previous STP studies, where stored energy dissipated after only a few seconds. STP behavior is the result of reversible changes in bilayer area and thickness. On the other hand, LTP is the result of additional molecular and structural changes to the zwitterionic lipid headgroups and the dielectric properties of the lipid bilayer that result from the buildup of an increasingly asymmetric charge distribution at the bilayer interfaces.


Assuntos
Potenciação de Longa Duração , Fosfolipídeos , Potenciação de Longa Duração/fisiologia , Fosfolipídeos/química , Bicamadas Lipídicas/química , Plasticidade Neuronal/fisiologia , Água/química
2.
Eur Phys J E Soft Matter ; 47(1): 2, 2024 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-38206535

RESUMO

Electrical signals may propagate along neuronal membranes in the brain, thus enabling communication between nerve cells. In doing so, lipid bilayers, fundamental scaffolds of all cell membranes, deform and restructure in response to such electrical activity. These changes impact the electromechanical properties of the membrane, which then physically store biological memory. This memory can exist either over a short or long period of time. Traditionally, biological memory is defined by the strengthening or weakening of transmissions between individual neurons. Here, we show that electrical stimulation may also alter the properties of the lipid membrane, thus pointing toward a novel mechanism for memory storage. Furthermore, based on the analysis of existing electrophysiological data, we study molecular mechanisms underlying the long-term potentiation in phospholipid membranes. Finally, we examine possible relationships between the memory capacitive properties of lipid membranes, neuronal learning, and memory.


Assuntos
Eletricidade , Bicamadas Lipídicas , Membrana Celular , Estimulação Elétrica , Fosfolipídeos
3.
Biophys J ; 122(6): 931-949, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36698312

RESUMO

For the past 50 years, evidence for the existence of functional lipid domains has been steadily accumulating. Although the notion of functional lipid domains, also known as "lipid rafts," is now widely accepted, this was not always the case. This ambiguity surrounding lipid domains could be partly attributed to the fact that they are highly dynamic, nanoscopic structures. Since most commonly used techniques are sensitive to microscale structural features, it is therefore, not surprising that it took some time to reach a consensus regarding their existence. In this review article, we will discuss studies that have used techniques that are inherently sensitive to nanoscopic structural features (i.e., neutron scatting, nuclear magnetic resonance, and Förster resonance energy transfer). We will also mention techniques that may be of use in the future (i.e., cryoelectron microscopy, droplet interface bilayers, inelastic x-ray scattering, and neutron reflectometry), which can further our understanding of the different and unique physicochemical properties of nanoscopic lipid domains.


Assuntos
Transferência Ressonante de Energia de Fluorescência , Bicamadas Lipídicas , Bicamadas Lipídicas/química , Microscopia Crioeletrônica
4.
MRS Bull ; 48(1): 13-21, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36908998

RESUMO

Abstract: In biology, heterosynaptic plasticity maintains homeostasis in synaptic inputs during associative learning and memory, and initiates long-term changes in synaptic strengths that nonspecifically modulate different synapse types. In bioinspired neuromorphic circuits, heterosynaptic plasticity may be used to extend the functionality of two-terminal, biomimetic memristors. In this article, we explore how changes in the pH of droplet interface bilayer aqueous solutions modulate the memristive responses of a lipid bilayer membrane in the pH range 4.97-7.40. Surprisingly, we did not find conclusive evidence for pH-dependent shifts in the voltage thresholds (V*) needed for alamethicin ion channel formation in the membrane. However, we did observe a clear modulation in the dynamics of pore formation with pH in time-dependent, pulsed voltage experiments. Moreover, at the same voltage, lowering the pH resulted in higher steady-state currents because of increased numbers of conductive peptide ion channels in the membrane. This was due to increased partitioning of alamethicin monomers into the membrane at pH 4.97, which is below the pKa (~5.3-5.7) of carboxylate groups on the glutamate residues of the peptide, making the monomers more hydrophobic. Neutralization of the negative charges on these residues, under acidic conditions, increased the concentration of peptide monomers in the membrane, shifting the equilibrium concentrations of peptide aggregate assemblies in the membrane to favor greater numbers of larger, increasingly more conductive pores. It also increased the relaxation time constants for pore formation and decay, and enhanced short-term facilitation and depression of the switching characteristics of the device. Modulating these thresholds globally and independently of alamethicin concentration and applied voltage will enable the assembly of neuromorphic computational circuitry with enhanced functionality. Impact statement: We describe how to use pH as a modulatory "interneuron" that changes the voltage-dependent memristance of alamethicin ion channels in lipid bilayers by changing the structure and dynamical properties of the bilayer. Having the ability to independently control the threshold levels for pore conduction from voltage or ion channel concentration enables additional levels of programmability in a neuromorphic system. In this article, we note that barriers to conduction from membrane-bound ion channels can be lowered by reducing solution pH, resulting in higher currents, and enhanced short-term learning behavior in the form of paired-pulse facilitation. Tuning threshold values with environmental variables, such as pH, provide additional training and learning algorithms that can be used to elicit complex functionality within spiking neural networks. Supplementary information: The online version contains supplementary material available at 10.1557/s43577-022-00344-z.

5.
J Am Chem Soc ; 142(1): 290-299, 2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31801348

RESUMO

Polymer-stabilized liquid/liquid interfaces are an important and growing class of bioinspired materials that combine the structural and functional capabilities of advanced synthetic materials with naturally evolved biophysical systems. These platforms have the potential to serve as selective membranes for chemical separations and molecular sequencers and to even mimic neuromorphic computing elements. Despite the diversity in function, basic insight into the assembly of well-defined amphiphilic polymers to form functional structures remains elusive, which hinders the continued development of these technologies. In this work, we provide new mechanistic insight into the assembly of an amphiphilic polymer-stabilized oil/aqueous interface, in which the headgroups consist of positively charged methylimidazolium ionic liquids, and the tails are short, monodisperse oligodimethylsiloxanes covalently attached to the headgroups. We demonstrate using vibrational sum frequency generation spectroscopy and pendant drop tensiometery that the composition of the bulk aqueous phase, particularly the ionic strength, dictates the kinetics and structures of the amphiphiles in the organic phase as they decorate the interface. These results show that H-bonding and electrostatic interactions taking place in the aqueous phase bias the grafted oligomer conformations that are adopted in the neighboring oil phase. The kinetics of self-assembly were ionic strength dependent and found to be surprisingly slow, being composed of distinct regimes where molecules adsorb and reorient on relatively fast time scales, but where conformational sampling and frustrated packing takes place over longer time scales. These results set the stage for understanding related chemical phenomena of bioinspired materials in diverse technological and fundamental scientific fields and provide a solid physical foundation on which to design new functional interfaces.


Assuntos
Lipídeos/química , Polímeros/química , Fenômenos Biofísicos , Ligação de Hidrogênio , Cinética , Estrutura Molecular , Concentração Osmolar , Eletricidade Estática , Tensão Superficial
6.
Langmuir ; 35(37): 12236-12245, 2019 09 17.
Artigo em Inglês | MEDLINE | ID: mdl-31469572

RESUMO

Lipid bilayers are fundamental building blocks of cell membranes, which contain the machinery needed to perform a range of biological functions, including cell-cell recognition, signal transduction, receptor trafficking, viral budding, and cell fusion. Importantly, many of these functions are thought to take place in the laterally phase-separated regions of the membrane, commonly known as lipid rafts. Here, we provide experimental evidence for the "stabilizing" effect of melatonin, a naturally occurring hormone produced by the brain's pineal gland, on phase-separated model membranes mimicking the outer leaflet of plasma membranes. Specifically, we show that melatonin stabilizes the liquid-ordered/liquid-disordered phase coexistence over an extended range of temperatures. The melatonin-mediated stabilization effect is observed in both nanometer- and micrometer-sized liposomes using small angle neutron scattering (SANS), confocal fluorescence microscopy, and differential scanning calorimetry. To experimentally detect nanoscopic domains in 50 nm diameter phospholipid vesicles, we developed a model using the Landau-Brazovskii approach that may serve as a platform for detecting the existence of nanoscopic lateral heterogeneities in soft matter and biological materials with spherical and planar geometries.


Assuntos
Bicamadas Lipídicas/química , Melatonina/química , Fosfolipídeos/química
7.
Langmuir ; 33(38): 10016-10026, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28810118

RESUMO

In-plane lipid organization and phase separation in natural membranes play key roles in regulating many cellular processes. Highly cooperative, first-order phase transitions in model membranes consisting of few lipid components are well understood and readily detectable via calorimetry, densitometry, and fluorescence. However, far less is known about natural membranes containing numerous lipid species and high concentrations of cholesterol, for which thermotropic transitions are undetectable by the above-mentioned techniques. We demonstrate that membrane capacitance is highly sensitive to low-enthalpy thermotropic transitions taking place in complex lipid membranes. Specifically, we measured the electrical capacitance as a function of temperature for droplet interface bilayer model membranes of increasing compositional complexity, namely, (a) a single lipid species, (b) domain-forming ternary mixtures, and (c) natural brain total lipid extract (bTLE). We observed that, for single-species lipid bilayers and some ternary compositions, capacitance exhibited an abrupt, temperature-dependent change that coincided with the transition detected by other techniques. In addition, capacitance measurements revealed transitions in mixed-lipid membranes that were not detected by the other techniques. Most notably, capacitance measurements of bTLE bilayers indicated a transition at ∼38 °C not seen with any other method. Likewise, capacitance measurements detected transitions in some well-studied ternary mixtures that, while known to yield coexisting lipid phases, are not detected with calorimetry or densitometry. These results indicate that capacitance is exquisitely sensitive to low-enthalpy membrane transitions because of its sensitivity to changes in bilayer thickness that occur when lipids and excess solvent undergo subtle rearrangements near a phase transition. Our findings also suggest that heterogeneity confers stability to natural membranes that function near transition temperatures by preventing unwanted defects and macroscopic demixing associated with high-enthalpy transitions commonly found in simpler mixtures.


Assuntos
Termodinâmica , Varredura Diferencial de Calorimetria , Bicamadas Lipídicas , Transição de Fase , Temperatura
8.
Proc Natl Acad Sci U S A ; 111(21): 7588-93, 2014 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-24821774

RESUMO

Droplet interface bilayers are versatile model membranes useful for synthetic biology and biosensing; however, to date they have always been confined to fluid reservoirs. Here, we demonstrate that when two or more water droplets collide on an oil-infused substrate, they exhibit noncoalescence due to the formation of a thin oil film that gets squeezed between the droplets from the bottom up. We show that when phospholipids are included in the water droplets, a stable droplet interface bilayer forms between the noncoalescing water droplets. As with traditional oil-submerged droplet interface bilayers, we were able to characterize ion channel transport by incorporating peptides into each droplet. Our findings reveal that droplet interface bilayers can function in ambient environments, which could potentially enable biosensing of airborne matter.


Assuntos
Técnicas Biossensoriais/métodos , Interações Hidrofóbicas e Hidrofílicas , Canais Iônicos/metabolismo , Bicamadas Lipídicas/química , Água/química , Transporte Biológico/fisiologia
9.
J Phys Chem A ; 120(34): 6719-27, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27499174

RESUMO

The effect of gold and aluminum zero-mode waveguides (ZMWs) on the brightness of immobilized single emitters was characterized by probing fluorophores that absorb in the green and red regions of the visible spectrum. Aluminum ZMWs enhance the emission of Atto565 fluorophores upon green excitation, but they do not enhance the emission of Atto647N fluorophores upon red excitation. Gold ZMWs increase emission of both fluorophores with Atto647N showing enhancement that is threefold higher than that observed for Atto565. This work indicates that 200 nm gold ZMWs are better suited for single-molecule fluorescence studies in the red region of the visible spectrum, while aluminum appears more suited for the green region of the visible spectrum.

10.
Langmuir ; 31(47): 12883-93, 2015 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-26556227

RESUMO

The droplet interface bilayer (DIB)--a method to assemble planar lipid bilayer membranes between lipid-coated aqueous droplets--has gained popularity among researchers in many fields. Well-packed lipid monolayer on aqueous droplet-oil interfaces is a prerequisite for successfully assembling DIBs. Such monolayers can be achieved by two different techniques: "lipid-in", in which phospholipids in the form of liposomes are placed in water, and "lipid-out", in which phospholipids are placed in oil as inverse micelles. While both approaches are capable of monolayer assembly needed for bilayer formation, droplet pairs assembled with these two techniques require significantly different incubation periods and exhibit different success rates for bilayer formation. In this study, we combine experimental interfacial tension measurements with molecular dynamics simulations of phospholipids (DPhPC and DOPC) assembled from water and oil origins to understand the differences in kinetics of monolayer formation. With the results from simulations and by using a simplified model to analyze dynamic interfacial tensions, we conclude that, at high lipid concentrations common to DIBs, monolayer formation is simple adsorption controlled for lipid-in technique, whereas it is predominantly adsorption-barrier controlled for the lipid-out technique due to the interaction of interface-bound lipids with lipid structures in the subsurface. The adsorption barrier established in lipid-out technique leads to a prolonged incubation time and lower bilayer formation success rate, proving a good correlation between interfacial tension measurements and bilayer formation. We also clarify that advective flow expedites monolayer formation and improves bilayer formation success rate by disrupting lipid structures, rather than enhancing diffusion, in the subsurface and at the interface for lipid-out technique. Additionally, electrical properties of DIBs formed with varying lipid placement and type are characterized.


Assuntos
Bicamadas Lipídicas/química , Fosfolipídeos/química , Adsorção , Cinética
11.
Langmuir ; 31(14): 4224-31, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25790280

RESUMO

Air-stable droplet interface bilayers (airDIBs) on oil-infused surfaces are versatile model membranes for synthetic biology applications, including biosensing of airborne species. However, airDIBs are subject to evaporation, which can, over time, destabilize them and reduce their useful lifetime compared to traditional DIBs that are fully submerged in oil. Here, we show that the lifetimes of airDIBs can be extended by as much as an order of magnitude by maintaining the temperature just above the dew point. We find that raising the temperature from near the dew point (which was 7 °C at 38.5% relative humidity and 22 °C air temperature) to 20 °C results in the loss of hydrated water molecules from the polar headgroups of the lipid bilayer membrane due to evaporation, resulting in a phase transition with increased disorder. This dehydration transition primarily affects the bilayer electrical resistance by increasing the permeability through an increasingly disordered polar headgroup region of the bilayer. Temperature and relative humidity are conveniently tunable parameters for controlling the stability and composition of airDIB membranes while still allowing for operation in ambient environments.


Assuntos
Ar , Permeabilidade da Membrana Celular , Bicamadas Lipídicas/química , Capacitância Elétrica , Impedância Elétrica , Membranas Artificiais , Nanoestruturas/química , Óleos/química , Pressão Osmótica , Propriedades de Superfície , Temperatura de Transição , Volatilização
12.
Soft Matter ; 11(38): 7592-605, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26289743

RESUMO

Thickness and tension are important physical parameters of model cell membranes. However, traditional methods to measure these quantities require multiple experiments using separate equipment. This work introduces a new multi-step procedure for directly accessing in situ multiple physical properties of droplet interface bilayers (DIB), including specific capacitance (related to thickness), lipid monolayer tension in the Plateau-Gibbs border, and bilayer tension. The procedure employs a combination of mechanical manipulation of bilayer area followed by electrowetting of the capacitive interface to examine the sensitivities of bilayer capacitance to area and contact angle to voltage, respectively. These data allow for determining the specific capacitance of the membrane and surface tension of the lipid monolayer, which are then used to compute bilayer thickness and tension, respectively. The use of DIBs affords accurate optical imaging of the connected droplets in addition to electrical measurements of bilayer capacitance, and it allows for reversibly varying bilayer area. After validating the accuracy of the technique with diphytanoyl phosphatidylcholine (DPhPC) DIBs in hexadecane, the method is applied herein to quantify separately the effects on membrane thickness and tension caused by varying the solvent in which the DIB is formed and introducing cholesterol into the bilayer. Because the technique relies only on capacitance measurements and optical images to determine both thickness and tension, this approach is specifically well-suited for studying the effects of peptides, biomolecules, natural and synthetic nanoparticles, and other species that accumulate within membranes without altering bilayer conductance.


Assuntos
Capacitância Elétrica , Bicamadas Lipídicas/química , Fosfatidilcolinas/química , Alcanos/química , Eletroumectação , Solventes/química , Tensão Superficial
13.
Soft Matter ; 10(15): 2530-8, 2014 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-24647872

RESUMO

Droplet interface bilayers (DIBs) are a powerful platform for studying the dynamics of synthetic cellular membranes; however, very little has been done to exploit the unique dynamical features of DIBs. Here, we generate microscale droplet interface bilayers (µDIBs) by bringing together femtoliter-volume water droplets in a microfluidic oil channel, and characterize morphological changes of the µDIBs as the droplets shrink due to evaporation. By varying the initial conditions of the system, we identify three distinct classes of dynamic morphology. (1) Buckling and fission: when forming µDIBs using the lipid-out method (lipids in oil phase), lipids in the shrinking monolayers continually pair together and slide into the bilayer to conserve their mass. As the bilayer continues to grow, it becomes confined, buckles, and eventually fissions one or more vesicles. (2) Uniform shrinking: when using the lipid-in method (lipids in water phase) to form µDIBs, lipids uniformly transfer from the monolayers and bilayer into vesicles contained inside the water droplets. (3) Stretching and unzipping: finally, when the droplets are pinned to the wall(s) of the microfluidic channel, the droplets become stretched during evaporation, culminating in the unzipping of the bilayer and droplet separation. These findings offer a better understanding of the dynamics of coupled lipid interfaces.

14.
Chem Phys Lipids ; 262: 105397, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38740276

RESUMO

Amantadine, a small amphilphic organic compound that consists of an adamantane backbone and an amino group, was first recognized as an antiviral in 1963 and received approval for prophylaxis against the type A influenza virus in 1976. Since then, it has also been used to treat Parkinson's disease-related dyskinesia and is being considered as a treatment for corona viruses. Since amantadine usually targets membrane-bound proteins, its interactions with the membrane are also thought to be important. Biological membranes are now widely understood to be laterally heterogeneous and certain proteins are known to preferentially co-localize within specific lipid domains. Does amantadine, therefore, preferentially localize in certain lipid composition domains? To address this question, we studied amantadine's interactions with phase separating membranes composed of cholesterol, DSPC (1,2-distearoyl-sn-glycero-3-phosphocholine), POPC (1-palmitoyl-2-oleoyl-glycero-3-phosphocholine), and DOPC (1,2-dioleoyl-sn-glycero-3-phosphocholine), as well as single-phase DPhPC (1,2-diphytanoyl-sn-glycero-3-phos-phocholine) membranes. From Langmuir trough and differential scanning calorimetry (DSC) measurements, we determined, respectively, that amantadine preferentially binds to disordered lipids, such as POPC, and lowers the phase transition temperature of POPC/DSPC/cholesterol mixtures, implying that amantadine increases membrane disorder. Further, using droplet interface bilayers (DIBs), we observed that amantadine disrupts DPhPC membranes, consistent with its disordering properties. Finally, we carried out molecular dynamics (MD) simulations on POPC/DSPC/cholesterol membranes with varying amounts of amantadine. Consistent with experiment, MD simulations showed that amantadine prefers to associate with disordered POPC-rich domains, domain boundaries, and lipid glycerol backbones. Since different proteins co-localize with different lipid domains, our results have possible implications as to which classes of proteins may be better targets for amantadine.


Assuntos
Amantadina , Amantadina/química , Simulação de Dinâmica Molecular , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Colesterol/química , Lipídeos de Membrana/química , Lipídeos de Membrana/metabolismo
15.
J Colloid Interface Sci ; 669: 552-560, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38729003

RESUMO

HYPOTHESIS: Understanding the rules that control the assembly of nanostructured soft materials at interfaces is central to many applications. We hypothesize that electrolytes can be used to alter the hydration shell of amphiphilic oligomers at the air-aqueous interface of Langmuir films, thereby providing a means to control the formation of emergent nanostructures. EXPERIMENTS: Three representative salts - (NaF, NaCl, NaSCN) were studied for mediating the self-assembly of oligodimethylsiloxane methylimidazolium (ODMS-MIM+) amphiphiles in Langmuir films. The effects of the different salts on the nanostructure assembly of these films were probed using vibrational sum frequency generation (SFG) spectroscopy and Langmuir trough techniques. Experimental data were supported by atomistic molecular dynamic simulations. FINDINGS: Langmuir trough surface pressure - area isotherms suggested a surprising effect on oligomer assembly, whereby the presence of anions affects the stability of the interfacial layer irrespective of their surface propensities. In contrast, SFG results implied a strong anion effect that parallels the surface activity of anions. These seemingly contradictory trends are explained by anion driven tail dehydration resulting in increasingly heterogeneous systems with entangled ODMS tails and appreciable anion penetration into the complex interfacial layer comprised of headgroups, tails, and interfacial water molecules. These findings provide physical and chemical insight for tuning a wide range of interfacial assemblies.

16.
J Am Chem Soc ; 135(15): 5545-8, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23550820

RESUMO

Droplet interface bilayers (DIBs) are a robust platform for studying synthetic cellular membranes; however, to date no DIBs have been produced at cellular length scales. Here, we create microscale droplet interface bilayers (µDIBs) at the interface between aqueous femtoliter-volume droplets within an oil-filled microfluidic channel. The uniquely large area-to-volume ratio of the droplets results in strong evaporation effects, causing the system to transition through three distinct regimes. First, the two adjacent droplets shrink into the shape of a single spherical droplet, where an augmented lipid bilayer partitions two hemispherical volumes. In the second regime, the combined effects of the shrinking monolayers and growing bilayer force the confined bilayer to buckle to conserve its mass. Finally, at a critical bending moment, the buckling bilayer fissions a vesicle to regulate its shape and mass. The µDIBs produced here enable evaporation-induced bilayer dynamics reminiscent of endo- and exocytosis in cells.


Assuntos
Bicamadas Lipídicas/química , Fenômenos Mecânicos , Membranas Artificiais , Técnicas Analíticas Microfluídicas , Volatilização
17.
Langmuir ; 29(30): 9516-24, 2013 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-23822157

RESUMO

Water suspended on chilled superhydrophobic surfaces exhibits delayed freezing; however, the interdrop growth of frost through subcooled condensate forming on the surface seems unavoidable in humid environments. It is therefore of great practical importance to determine whether facile defrosting is possible on superhydrophobic surfaces. Here, we report that nanostructured superhydrophobic surfaces promote the growth of frost in a suspended Cassie state, enabling its dynamic removal upon partial melting at low tilt angles (<15°). The dynamic removal of the melting frost occurred in two stages: spontaneous dewetting followed by gravitational mobilization. This dynamic defrosting phenomenon is driven by the low contact angle hysteresis of the defrosted meltwater relative to frost on microstructured superhydrophobic surfaces, which forms in the impaled Wenzel state. Dynamic defrosting on nanostructured superhydrophobic surfaces minimizes the time, heat, and gravitational energy required to remove frost from the surface, and is of interest for a variety of systems in cold and humid environments.

18.
Membranes (Basel) ; 13(4)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37103869

RESUMO

Lipid bilayers are supramolecular structures responsible for a range of processes, such as transmembrane transport of ions and solutes, and sorting and replication of genetic materials, to name just a few. Some of these processes are transient and currently, cannot be visualized in real space and time. Here, we developed an approach using 1D, 2D, and 3D Van Hove correlation functions to image collective headgroup dipole motions in zwitterionic phospholipid bilayers. We show that both 2D and 3D spatiotemporal images of headgroup dipoles are consistent with commonly understood dynamic features of fluids. However, analysis of the 1D Van Hove function reveals lateral transient and re-emergent collective dynamics of the headgroup dipoles-occurring at picosecond time scales-that transmit and dissipate heat at longer times, due to relaxation processes. At the same time, the headgroup dipoles also generate membrane surface undulations due a collective tilting of the headgroup dipoles. A continuous intensity band of headgroup dipole spatiotemporal correlations-at nanometer length and nanosecond time scales-indicates that dipoles undergo stretching and squeezing elastic deformations. Importantly, the above mentioned intrinsic headgroup dipole motions can be externally stimulated at GHz-frequency scale, enhancing their flexoelectric and piezoelectric capabilities (i.e., increased conversion efficiency of mechanical energy into electric energy). In conclusion, we discuss how lipid membranes can provide molecular-level insights about biological learning and memory, and as platforms for the development of the next generation of neuromorphic computers.

19.
J Phys Chem B ; 126(11): 2316-2323, 2022 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-35289625

RESUMO

Molecular orientation plays a pivotal role in defining the functionality and chemistry of interfaces, yet accurate measurements probing this important feature are few, due, in part, to technical and analytical limitations in extracting information from molecular monolayers. For example, buried liquid/liquid interfaces, where a complex and poorly understood balance of inter- and intramolecular interactions impart structural constraints that facilitate the formation of supramolecular assemblies capable of new functions, are difficult to probe experimentally. Here, we use vibrational sum-frequency generation spectroscopy, numerical polarization analysis, and atomistic molecular dynamics simulations to probe molecular orientations at buried oil/aqueous interfaces decorated with amphiphilic oligomers. We show that the orientation of self-assembled oligomers changes upon the addition of salts in the aqueous phase. The evolution of these structures can be described by competitive ion effects in the aqueous phase altering the orientations of the tails extending into the oil phase. These specific anionic effects occur via interfacial ion pairing and associated changes in interfacial solvation and hydrogen-bonding networks. These findings provide more quantitative insight into orientational changes encountered during self-assembly and pave the way for the design of functional interfaces for chemical separations, neuromorphic computing applications, and related biomimetic systems.


Assuntos
Simulação de Dinâmica Molecular , Água , Ligação de Hidrogênio , Sais , Análise Espectral/métodos , Água/química
20.
ACS Synth Biol ; 11(11): 3733-3742, 2022 11 18.
Artigo em Inglês | MEDLINE | ID: mdl-36260840

RESUMO

Cell-free protein synthesis is an important tool for studying gene expression and harnessing it for applications. In cells, gene expression is regulated in part by the spatial organization of transcription and translation. Unfortunately, current cell-free approaches are unable to control the organization of molecular components needed for gene expression, which limits the ability to probe and utilize its effects. Here, we show, using complementary computational and experimental approaches, that macromolecular crowding can be used to control the spatial organization and translational efficiency of gene expression in cell-sized vesicles. Computer simulations and imaging experiments reveal that, as crowding is increased, DNA plasmids become localized at the inner surface of vesicles. Ribosomes, in contrast, remain uniformly distributed, demonstrating that crowding can be used to differentially organize components of gene expression. We further carried out cell-free protein synthesis reactions in cell-sized vesicles and quantified mRNA and protein abundance. At sufficiently high levels of crowding, we observed localization of mRNA near vesicle surfaces, a decrease in translational efficiency and protein abundance, and anomalous scaling of protein abundance as a function of vesicle size. These results are consistent with high levels of crowding causing altered spatial organization and slower diffusion. Our work demonstrates a straightforward way to control the organization of gene expression in cell-sized vesicles and provides insight into the spatial regulation of gene expression in cells.


Assuntos
Proteínas , Substâncias Macromoleculares/metabolismo , Difusão , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Expressão Gênica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA