RESUMO
Acute-phase response (APR) is an innate stress reaction to tissue trauma or injury, infection, and environmental insults like ozone (O3). Regardless of the location of stress, the liver has been considered the primary contributor to circulating acute-phase proteins (APPs); however, the mechanisms underlying APR induction are unknown. Male Wistar-Kyoto rats were exposed to air or O3 (1 ppm, 6-hr/day, 1 or 2 days) and examined immediately after each exposure and after 18-hr recovery for APR proteins and gene expression. To assess the contribution of adrenal-derived stress hormones, lung and liver global gene expression data from sham and adrenalectomized rats exposed to air or O3 were compared for APR transcriptional changes. Data demonstrated serum protein alterations for selected circulating positive and negative APPs following 2 days of O3 exposure and during recovery. At baseline, APP gene expression was several folds higher in the liver relative to the lung. O3-induced increases were significant for lung but not liver for some genes including orosomucoid-1. Further, comparative assessment of mRNA seq data for known APPs in sham rats exhibited marked elevation in the lung but not liver, and a near-complete abolishment of APP mRNA levels in lung tissue of adrenalectomized rats. Thus, the lung appears to play a critical role in O3-induced APP synthesis and requires the presence of circulating adrenal-derived stress hormones. The relative contribution of lung versus liver and the role of neuroendocrine stress hormones need to be considered in future APR studies involving inhaled pollutants.
Assuntos
Proteínas de Fase Aguda/genética , Poluentes Atmosféricos/efeitos adversos , Expressão Gênica , Hormônios/metabolismo , Fígado/patologia , Pulmão/patologia , Ozônio/efeitos adversos , Proteínas de Fase Aguda/metabolismo , Reação de Fase Aguda/induzido quimicamente , Glândulas Suprarrenais/metabolismo , Animais , Masculino , Ratos , Ratos Endogâmicos WKYRESUMO
Air pollution has been associated with metabolic diseases and hepatic steatosis-like changes. We have shown that ozone alters liver gene expression for metabolic processes through neuroendocrine activation. This study aimed to further characterize ozone-induced changes and to determine the impact of hepatic vagotomy (HV) which reduces parasympathetic influence. Twelve-week-old male Wistar-Kyoto rats underwent HV or sham surgery 5-6 days before air or ozone exposure (0 or 1 ppm; 4 h/day for 1 or 2 days). Ozone-induced lung injury, hyperglycemia, glucose intolerance, and increases in circulating cholesterol, triglycerides, and leptin were similar in rats with HV and sham surgery. However, decreases in circulating insulin and increased HDL and LDL were observed only in ozone-exposed HV rats. Ozone exposure resulted in changed liver gene expression in both sham and HV rats (sham > HV), however, HV did not change expression in air-exposed rats. Upstream target analysis revealed that ozone-induced transcriptomic changes were similar to responses induced by glucocorticoid-mediated processes in both sham and HV rats. The directionality of ozone-induced changes reflecting cellular response to stress, metabolic pathways, and immune surveillance was similar in sham and HV rats. However, pathways regulating cell-cycle, regeneration, proliferation, cell growth, and survival were enriched by ozone in a directionally opposing manner between sham and HV rats. In conclusion, parasympathetic innervation modulated ozone-induced liver transcriptional responses for cell growth and regeneration without affecting stress-mediated metabolic changes. Thus, impaired neuroendocrine axes and parasympathetic innervation could collectively contribute to adverse effects of air pollutants on the liver.