RESUMO
The existence of a formal Endocannabinoid System in C. elegans has been questioned due to data showing the absence of typical cannabinoid receptors in the worm; however, the presence of a full metabolism for endocannabinoids, alternative ligands, and receptors for these agents and a considerable number of orthologous and homologous genes regulating physiological cannabinoid-like signals and responses - several of which are similar to those of mammals - demonstrates a well-structured and functional complex system in nematodes. In this review, we describe and compare similarities and differences between the Endocannabinoid System in mammals and nematodes, highlighting the basis for the integral study of this novel system in the worm.
Assuntos
Canabinoides , Endocanabinoides , Animais , Caenorhabditis elegans/metabolismo , Receptores de Canabinoides/metabolismo , Mamíferos/metabolismoRESUMO
A number of physiological responses in the central nervous system (CNS) are regulated by the endocannabinoid system (ECS). Inhibition of neuronal excitability via activation of cannabinoid receptors (CBr) constitutes a potential protective response against neurotoxic insults. Oleamide (ODA) is a fatty acid amide with endocannabinoid profile exerting several effects in the CNS, though its neuroprotective properties remain unknown. The tryptophan metabolite quinolinic acid (QUIN) elicits toxic effects via overactivation of N-methyl-D-aspartate receptors (NMDAr) after its accumulation in the CNS under pathological conditions. Here, we investigated the protective properties of ODA against the excitotoxic damage induced by QUIN in rat brain synaptosomes and cortical slices, and whether these effects are linked to the stimulation of the endocannabinoid system via CB1 and/or CB2 receptor activation. ODA (1-50 µM) prevented the QUIN (100 µM)-induced loss of mitochondrial reductive capacity in synaptosomes in a mechanism partially mediated by CB1 receptor, as evidenced by the recovery of mitochondrial dysfunction induced by co-incubation with the CB1 receptor antagonist/inverse agonist AM281 (1 µM). In cortical slices, ODA prevented the short-term QUIN-induced loss of cell viability and the cell damage in a partial CB1 and CB2 receptor-dependent manner. Altogether, these findings demonstrate the neuroprotective and modulatory properties of ODA in biological brain preparations exposed to excitotoxic insults and the partial role that the stimulation of CB1 and CB2 receptors exerts in these effects.
Assuntos
Sobrevivência Celular/fisiologia , Córtex Cerebral/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Ácidos Oleicos/farmacologia , Receptor CB1 de Canabinoide/fisiologia , Receptor CB2 de Canabinoide/fisiologia , Sinaptossomos/efeitos dos fármacos , Sinaptossomos/fisiologia , Animais , Encéfalo/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Morfolinas/farmacologia , Ácidos Oleicos/antagonistas & inibidores , Pirazóis/farmacologia , Ácido Quinolínico/antagonistas & inibidores , Ácido Quinolínico/toxicidade , Ratos , Receptor CB1 de Canabinoide/agonistas , Receptor CB2 de Canabinoide/agonistasRESUMO
Caffeic acid (CA) is a hydroxycinnamic acid derivative and polyphenol with antioxidant and anti-inflammatory activities. The neuroprotective properties of CA still need detailed characterization in different biological models. Here, the antioxidant and neuroprotective effects of CA were compared in in vitro and in vivo neurotoxic models. Biochemical outcomes of cell dysfunction, oxidative damage, and transcriptional regulation were assessed in rat cortical slices, whereas endpoints of physiological stress and motor alterations were characterized in Caenorhabditis elegans (C. elegans). In rat cortical slices, CA (100 µM) prevented, in a differential manner, the loss of reductive capacity, the cell damage, and the oxidative damage induced by the excitotoxin quinolinic acid (QUIN, 100 µM), the pro-oxidant ferrous sulfate (FeSO4, 25 µM), and the dopaminergic toxin 6-hydroxydopamine (6-OHDA, 100 µM). CA also restored the levels of nuclear factor erythroid 2-related factor 2/antioxidant response element (Nrf2/ARE; a master antioxidant regulatory pathway) binding activity affected by the three toxins. In wild-type (N2) of C. elegans, but not in the skn-1 KO mutant strain (worms lacking the orthologue of mammalian Nrf2), CA (25 mM) attenuated the loss of survival induced by QUIN (100 mM), FeSO4 (15 mM), and 6-OHDA (25 mM). Motor alterations induced by the three toxic models in N2 and skn-1 KO strains were prevented by CA in a differential manner. Our results suggest that (1) CA affords partial protection against different toxic insults in mammalian brain tissue and in C. elegans specimens; (2) the Nrf2/ARE binding activity participates in the protective mechanisms evoked by CA in the mammalian cortical tissue; (3) the presence of the orthologous skn-1 pathway is required in the worms for CA to exert protective effects; and (4) CA exerts antioxidant and neuroprotective effects through homologous mechanisms in different species.
Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Ácidos Cafeicos/farmacologia , Córtex Cerebral/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores/farmacologia , Transdução de Sinais/efeitos dos fármacos , Fatores de Transcrição/metabolismo , Animais , Animais Geneticamente Modificados , Caenorhabditis elegans , Córtex Cerebral/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Técnicas de Cultura de Órgãos , Ratos , Ratos Wistar , Transdução de Sinais/fisiologia , Especificidade da EspécieRESUMO
One of the authors has incorrect family name spelling in the original article. Michael Ashner should read as Michael Aschner.
RESUMO
The endocannabinoid system (ECS) regulates several physiological processes in the Central Nervous System, including the modulation of neuronal excitability via activation of cannabinoid receptors (CBr). Both glutaric acid (GA) and quinolinic acid (QUIN) are endogenous metabolites that, under pathological conditions, recruit common toxic mechanisms. A synergistic effect between them has already been demonstrated, supporting potential implications for glutaric acidemia type I (GA I). Here we investigated the possible involvement of a cannabinoid component in the toxic model exerted by QUINâ¯+â¯GA in rat cortical slices and primary neuronal cell cultures. The effects of the CB1 receptor agonist anandamide (AEA), and the fatty acid amide hydrolase inhibitor URB597, were tested on cell viability in cortical brain slices and primary neuronal cultures exposed to QUIN, GA, or QUINâ¯+â¯GA. As a pre-treatment to the QUINâ¯+â¯GA condition, AEA prevented the loss of cell viability in both preparations. URB597 only protected in a moderate manner the cultured neuronal cells against the QUINâ¯+â¯GA-induced damage. The use of the CB1 receptor reverse agonist AM251 in both biological preparations prevented partially the protective effects exerted by AEA, thus suggesting a partial role of CB1 receptors in this toxic model. AEA also prevented the cell damage and apoptotic death induced by the synergic model in cell cultures. Altogether, these findings demonstrate a modulatory role of the ECS on the synergic toxic actions exerted by QUINâ¯+â¯GA, thus providing key information for the understanding of the pathophysiological events occurring in GA I.
Assuntos
Ácidos Araquidônicos/farmacologia , Córtex Cerebral/efeitos dos fármacos , Endocanabinoides/farmacologia , Glutaratos/toxicidade , Neurônios/efeitos dos fármacos , Alcamidas Poli-Insaturadas/farmacologia , Ácido Quinolínico/toxicidade , Animais , Benzamidas/farmacologia , Agonistas de Receptores de Canabinoides/farmacologia , Carbamatos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Sinergismo Farmacológico , Endocanabinoides/metabolismo , Feminino , Masculino , Neurônios/metabolismo , Piperidinas/farmacologia , Gravidez , Pirazóis/farmacologia , Ratos , Ratos Endogâmicos WF , Receptores de Canabinoides/metabolismoRESUMO
The tryptophan metabolite, quinolinic acid (QUIN), and the mitochondrial toxin 3-nitropropionic acid (3-NP) are two important tools for toxicological research commonly used in neurotoxic models of excitotoxicity, oxidative stress, energy depletion, and neuronal cell death in mammals. However, their toxic properties have yet to be explored in the nematode Caenorhabditis elegans (C. elegans) for the establishment of novel, simpler, complementary, alternative, and predictive neurotoxic model of mammalian neurotoxicity. In this work, the effects of QUIN (1-100 mM) and 3-NP (1-10 mM) were evaluated on various physiological parameters (survival, locomotion, and longevity) in a wild-type (WT) strand of C. elegans (N2). Their effects were also tested in the VC1772 strain (knock out for the antioxidant SKN-1 pathway) and the VP596 strain (worms with a reporter gene for glutathione S-transferase (GST) transcription) in order to establish the role of the SKN-1 pathway in the mode of action of QUIN and 3-NP. In N2, the higher doses of both toxins decreased survival, though only QUIN altered motor activity. Both toxins also reduced longevity in the VC1772 strain (as compared to N2 strain) and augmented GST transcription in the VP596 strain at the highest doses. The changes induced by both toxins require high doses, and therefore appear moderate when compared with other toxic agents. Nevertheless, the alterations produced by QUIN and 3-NP in C. elegans are relevant to mammalian neurotoxicity as they provide novel mechanistic approaches to the assessment of neurotoxic events comprising oxidative stress and excitotoxicity, in the nematode model.
Assuntos
Anti-Hipertensivos/toxicidade , Proteínas de Caenorhabditis elegans/efeitos dos fármacos , Proteínas de Ligação a DNA/efeitos dos fármacos , Nitrocompostos/toxicidade , Propionatos/toxicidade , Ácido Quinolínico/toxicidade , Fatores de Transcrição/efeitos dos fármacos , Animais , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/metabolismo , Corpo Estriado/efeitos dos fármacos , Modelos Animais de Doenças , Mitocôndrias/efeitos dos fármacos , Síndromes Neurotóxicas/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fatores de Transcrição/metabolismoRESUMO
Molecules exhibiting antioxidant, neuroprotective, and regulatory properties inherent to natural products consumed by humans are gaining attention in biomedical research. Ferulic acid (FA) is a phenolic compound possessing antioxidant and cytoprotective properties. It is found in several vegetables, including sugarcane, where it serves as the main antioxidant component. Here, we compared the antioxidant and cytoprotective effects of FA with those of the total sugarcane aqueous extract (SCAE). Specifically, we assessed biochemical markers of cell dysfunction in rat cortical brain slices and markers of physiological stress in Caenorhabditis elegans upon exposure to toxins evoking different mechanisms of neurotoxicity, including direct oxidative stress and/or excitotoxicity. In rat cortical slices, FA (250 and 500 µM), but not SCAE (~ 270 µM of total polyphenols), prevented the loss of reductive capacity induced by the excitotoxin quinolinic acid (QUIN, 100 µM), the pro-oxidant agent ferrous sulfate (FeSO4, 25 µM), and the dopaminergic pro-oxidant 6-hydroxydopamine (6-OHDA, 100 µM). In wild-type (N2) C. elegans, FA (38 mM) exerted protective effects on decreased survival induced by FeSO4 (15 mM) and 6-OHDA (25 mM), and the motor alterations induced by QUIN (100 mM), FeSO4, and 6-OHDA. In contrast, SCAE (~ 13.5 mM of total polyphenols) evoked protective effects on the decreased survival induced by the three toxic agents, the motor alterations induced by FeSO4, and the reproductive deficit induced by FeSO4. In addition, FA was unable to reverse the decreased survival induced by all these toxins in the skn-1-/- strain (VC1772), which lacks the homolog of mammalian Nrf2, a master antioxidant gene. Altogether, our results suggest that (1) both FA and SCAE afford protection against toxic conditions, (2) not all the effects inherent to SCAE are due to FA, and (3) FA requires the skn-1 pathway to exert its protective effects in C. elegans.