Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 25(24): 16246-16263, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37283296

RESUMO

The photoionization of chiral molecules by elliptically polarized femtosecond laser pulses produces photoelectron angular distributions which show a strong and enantio-sensitive forward/backward asymmetry along the light propagation direction. We report on high precision measurements of this photoelectron elliptical dichroism (PEELD). Using an optical cavity to recycle the laser pulses and increase the signal-to-noise ratio, we determine enantiomeric excesses with a 0.04% precision with a low-power femtosecond laser (4 W) in a compact scheme. We perform momentum-resolved PEELD measurements in 16 molecules, from volatile terpenes to non-volatile amino acids and large iodoarenes. The results demonstrate the high structural sensitivity of PEELD, confirming the spectroscopic interest of this technique. Last, we show how a convolutional neural network can be used to retrieve the chemical and enantiomeric composition of a sample from the momentum-resolved PEELD maps.

2.
Opt Lett ; 46(8): 1804-1807, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33857074

RESUMO

We present an efficient and robust scheme to produce energetic sub-15 fs pulses centered at 515 nm with a peak power exceeding 3 GW. Combining efficient second-harmonic generation of a 135 fs, 50 W Yb-doped fiber amplifier with a low-loss capillary-based visible pulse compression stage, we reach an overall efficiency higher than >20%. The system is also designed to take advantage of the repetition rate flexibility of the fiber amplifier, leading sub-15 fs pulse generation from 166 to 500 kHz with an average power exceeding the 10 watt level. The combined reduction of the laser wavelength and pulse duration is expected to highly improve the yield of high-order harmonic generation to provide high photon flux of ultrashort extreme ultraviolet radiation.

3.
J Phys Chem A ; 125(15): 3159-3168, 2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33843236

RESUMO

In the atmosphere of Titan, Saturn's main satellite, molecular growth is initiated by 85.6 nm extreme ultraviolet (EUV) photons triggering a chemistry with charged and free-radical species. However, the respective contribution of these species to the complexification of matter is far from being known. This work presents a chemical analysis in order to contribute to a better understanding of aromatic formation pathways. A gas mixture of N2/CH4 (90/10%) within the closed SURFACAT reactor was irradiated at a relatively low pressure (0.1 mbar) and room temperature for 6 h by EUV photons (∼85.6 nm). The neutral molecules formed at the end of the irradiation were condensed in a cryogenic trap and analyzed by electron ionization mass spectrometry. An analysis of the dominant chemical pathways highlights the identification of benzene and toluene and underlies the importance of small ion and radical reactions. On the basis of the experimental results, a speculative mechanism based on sequential H-elimination/CH3-addition reactions is proposed for the growth of aromatics in Titan's atmosphere. Elementary reactions to be studied are given to instill future updates of photochemical models of Titan's atmosphere.

4.
Chirality ; 32(10): 1225-1233, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32700433

RESUMO

In this work, the photoionization of chiral molecules by an elliptically polarized, high repetition rate, femtosecond laser is probed. The resulting 3D photoelectron angular distribution shows a strong forward-backward asymmetry, which is highly dependent not only on the molecular structure but also on the ellipticity of the laser pulse. By continuously varying the laser ellipticity, we can observe molecular and enantiomer changes in real time at a previously unseen speed and precision. The technique allows enantiomeric excess of a pure compound to be measured with a 5% precision within 3 s, and a 10-min acquisition yields a precision of 0.4%. The isomers camphor and fenchone can be easily distinguished, unlike with conventional mass spectrometry. Preliminary results for the pharmaceutically interesting ibuprofen are also given, showing the capability of photoionization as a means of distinguishing larger molecular systems.

5.
Faraday Discuss ; 194: 325-348, 2016 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-27752675

RESUMO

Measuring the ultrafast dynamics of chiral molecules in the gas phase has been a long standing and challenging quest of molecular physics. The main limitation to reach that goal has been the lack of highly sensitive chiroptical measurement. By enabling chiral discrimination with up to several 10% of sensitivity, photoelectron circular dichroism (PECD) offers a solution to this issue. However, tracking ultrafast processes requires measuring PECD with ultrashort light pulses. Here we compare the PECD obtained with different light sources, from the extreme ultraviolet to the mid-infrared range, leading to different ionization regimes: single-photon, resonance-enhanced multiphoton, above-threshold and tunnel ionization. We use single and multiphoton ionization to probe the ultrafast relaxation of fenchone molecules photoexcited in their first Rydberg states. We show that time-resolved PECD enables revealing dynamics much faster than the population decay of the Rydberg states, demonstrating the high sensitivity of this technique to vibronic relaxation.

6.
J Phys Chem Lett ; 7(22): 4514-4519, 2016 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-27786493

RESUMO

Unravelling the main initial dynamics responsible for chiral recognition is a key step in the understanding of many biological processes. However, this challenging task requires a sensitive enantiospecific probe to investigate molecular dynamics on their natural femtosecond time scale. Here we show that, in the gas phase, the ultrafast relaxation dynamics of photoexcited chiral molecules can be tracked by recording time-resolved photoelectron circular dichroism (TR-PECD) resulting from the photoionization by a circularly polarized probe pulse. A large forward-backward asymmetry along the probe propagation axis is observed in the photoelectron angular distribution. Its evolution with pump-probe delay reveals ultrafast dynamics that are inaccessible in the angle-integrated photoelectron spectrum or via the usual electron emission anisotropy parameter (ß). PECD, which originates from the electron scattering in the chiral molecular potential, appears as a new sensitive observable for ultrafast molecular dynamics in chiral systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA