Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Phys Chem Chem Phys ; 26(8): 6736-6751, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38323471

RESUMO

An investigation into the intrinsic electrical conductivity of perovskite powders MAPbX3, where X represents iodine (I), bromine (Br), or chlorine (Cl), was conducted to explore its impact on their photovoltaic performance. Results revealed that MAPbCl3 demonstrated light absorption ability in the ultraviolet and visible regions, while MAPbBr3 showed capacity for light absorption at longer wavelengths in the visible spectrum. On the other hand, MAPbI3 exhibited good absorption at longer wavelengths, indicating its ability to absorb light in the near-infrared region. The optical bandgap of each perovskite was determined to be 2.90 eV for MAPbCl3, 2.20 eV for MAPbBr3, and 1.47 eV for MAPbI3. The electrical conductivities of these powders were measured in-plane using the four-probe method and through-plane by electrochemical impedance spectroscopy (EIS). Electrochemical impedance spectroscopy (EIS) studies revealed a significant change in the conductivity of the MAPbI3 perovskite at temperatures between 80 °C and 100 °C. This change could be attributed to structural modifications induced when the temperature exceeds these values. The through-plane conductivity changed from 3 × 10-8 S cm-1 at 60 °C to approximately 6 × 10-5 S cm-1 at 120 °C and around 2 × 10-3 S cm-1 at 200 °C. Meanwhile, the sheet conductivity (in-plane conductivity) measurements performed at ambient temperature reveal that sheet conductivities are 489 × 103 S m-1, 486 × 103 S m-1 and 510 × 103 S m-1 for MAPbBr3, MAPbCl3 and MAPbI3, respectively. This study provides valuable insights for optimizing the performance of perovskite solar cells. Understanding how dopants influence the electrical conductivity and photovoltaic properties of the perovskite material, this work will enable researchers to design and engineer more efficient and stable solar cell devices based on MAPbX3 perovskites.

2.
Phys Chem Chem Phys ; 24(48): 29731-29746, 2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36458515

RESUMO

An analysis of the ionic transport properties of BMIM [NTf2] in supported ionic-liquid-like phase (SILLP)-based membranes has been carried out based on experimental impedance spectroscopy measurements. The direct current (dc)-conductivity was analyzed to determine the temperature and frequency dependence. The fit of the loss tangent curve data with the Cole-Cole approximation of the electrode polarization model provides the conductivity, diffusivity, and density of charge carriers. Among these quantities, a significant increase in conductivity is observed when an ionic liquid is added to the polymeric matrix containing imidazolium fragments. The use of a recent generalization of Eyring's absolute rate theory allowed the elucidation of how the local entropy restrictions, due to the porosity of the polymeric matrix, control the conductive process. The fit of the conductivity data as a function of temperature manifests the behavior of the excess entropy with respect to the temperature. The activation entropy and enthalpy were also determined. Our results correlate the Debye length (LD) with the experimental values of conductivity, electrode polarization relaxation time, and sample relaxation time involved. Our work provides novel insights into the description of ionic transport in membranes as the diffusivity, mobility, and free charge density depend on the LD. Moreover, we discuss the behavior of the polarization relaxation time, the sample relaxation time, and the static permittivity as a function of the temperature.

3.
Phys Chem Chem Phys ; 23(2): 1759, 2021 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-33404563

RESUMO

Correction for 'Free ion diffusivity and charge concentration on cross-linked polymeric ionic liquid iongel films based on sulfonated zwitterionic salts and lithium ions' by David Valverde et al., Phys. Chem. Chem. Phys., 2019, 21, 17923-17932, DOI: 10.1039/C9CP01903K.

4.
Phys Chem Chem Phys ; 23(21): 12493, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34008626

RESUMO

Correction for 'Temperature dependence of anomalous protonic and superprotonic transport properties in mixed salts based on CsH2PO4' by Andreu Andrio et al., Phys. Chem. Chem. Phys., 2019, 21, 12948-12960, DOI: 10.1039/C8CP07472K.

5.
Soft Matter ; 16(32): 7624-7635, 2020 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-32735001

RESUMO

In this paper, a series of composite proton exchange membranes comprising a cobaltacarborane protonated H[Co(C2B9H11)2] named (H[COSANE]) and polybenzimidazole (PBI) for a high temperature proton exchange membrane fuel cell (PEMFC) is reported, with the aim of enhancing the proton conductivity of PBI membranes doped with phosphoric acid. The effects of the anion [Co(C2B9H11)2] concentration in three different polymeric matrices based on the PBI structure, poly(2,2'-(m-phenylene)-5,5'-bibenzimidazole) (PBI-1), poly[2,2'-(p-oxydiphenylene)-5,5'-bibenzimidazole] (PBI-2) and poly(2,2'-(p-hexafluoroisopropylidene)-5,5'-bibenzimidazole) (PBI-3), have been investigated. The conductivity, diffusivity and mobility are greater in the composite membrane poly(2,2'-(p-hexafluoroisopropylidene)-5,5'-bibenzimidazole) containing fluorinated groups, reaching a maximum when the amount of H[COSANE] was 15%. In general, all the prepared membranes displayed excellent and tunable properties as conducting materials, with conductivities higher than 0.03 S cm-1 above 140 °C. From an analysis of electrode polarization (EP) the proton diffusion coefficients and mobility have been calculated.

6.
Phys Chem Chem Phys ; 22(2): 437-445, 2020 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-31799568

RESUMO

The crystallographic structure of solid electrolytes and other materials determines the protonic conductivity in devices such as fuel cells, ionic-conductors, and supercapacitors. Experiments show that a rise of the temperature in a narrow interval may lead to a sudden increase of several orders of magnitude of the conductivity of some materials, a process called a superprotonic transition. Here, we use a novel macro-transport theory for irregular domains to show that the change of entropic restrictions associated with solid-solid phase or structural transitions controls the sudden change of the ionic conductivity when the superprotonic transition takes place. Specifically, we deduce a general formula for the temperature dependence on the ionic conductivity that fits remarkably well experimental data of superprotonic transitions in doped cesium phosphates and other materials reported in the literature.

7.
Chemistry ; 25(63): 14308-14319, 2019 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-31385348

RESUMO

Conducting organic polymers (COPs) are made of a conjugated polymer backbone supporting a certain degree of oxidation. These positive charges are compensated by the doping anions that are introduced into the polymer synthesis along with their accompanying cations. In this work, the influence of these cations on the stoichiometry and physicochemical properties of the resulting COPs have been investigated, something that has previously been overlooked, but, as here proven, is highly relevant. As the doping anion, metallacarborane [Co(C2 B9 H11 )2 ]- was chosen, which acts as a thistle. This anion binds to the accompanying cation with a distinct strength. If the binding strength is weak, the doping anion is more prone to compensate the positive charge of the polymer, and the opposite is also true. Thus, the ability of the doping anion to compensate the positive charges of the polymer can be tuned, and this determines the stoichiometry of the polymer. As the polymer, PEDOT was studied, whereas Cs+ , Na+ , K+ , Li+ , and H+ as cations. Notably, with the [Co(C2 B9 H11 )2 ]- anions, these cations are grouped into two sets, Cs+ and H+ in one and Na+ , K+ , and Li+ in the second, according to the stoichiometry of the COPs: 2:1 EDOT/[Co(C2 B9 H11 )2 ]- for Cs+ and H+ , and 3:1 EDOT/[Co(C2 B9 H11 )2 ]- for Na+ , K+ , and Li+ . The distinct stoichiometries are manifested in the physicochemical properties of the COPs, namely in the electrochemical response, electronic conductivity, ionic conductivity, and capacitance.

8.
Phys Chem Chem Phys ; 21(32): 17923-17932, 2019 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-31380865

RESUMO

The properties of various mixtures of a zwitterionic ionic liquid (ZIs-1) and LiNTf2, including their conductivity, have been studied showing how they can be adjusted through their molar composition. Conductivity tends to increase with the LiNTf2 content although it presents a minimum at the region close to the eutectic point. These mixtures also provide excellent features as liquid phases for the preparation of composite materials based on crosslinked PILs. The prepared films display excellent and tuneable properties as conducting materials, with conductivities that can be higher than 10-2 S cm-1 above 100 °C. The selected polymeric compositions show very good mechanical properties and thermal stability, even for low crosslinking degrees, along with a suitable flexibility and good transparency. The final properties of the films correlate with the composition of the monomeric mixture used and with that of the ZIs-1:LiNTf2 mixture.

9.
Phys Chem Chem Phys ; 21(24): 12948-12960, 2019 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-31165797

RESUMO

We present an experimental study and a theoretical interpretation of the temperature dependence of the transport properties of doped CsH2PO4 salts in both protonic and superprotonic phases. Cesium phosphate based solid electrolytes are technologically relevant because their operational temperature range is about 100 to 300 °C in which a superprotonic transition may manifest depending on its mixed composition. The experimental study was carried out using impedance spectroscopy at the temperature range of 150-230 °C, and the protonic and superprotonic transport properties and proton concentrations were calculated and analyzed by using the electrode polarization, and the Debye and Cole-Cole models for the dielectric constant. We have shown that the transport properties predicted by the Cole-Cole model are consistent with the conductivity measurements whereas the Debye model shows some inconsistencies. We attribute this to the fact that the Cole-Cole model incorporates the effects of interactions among charge carriers better than the more commonly used Debye model. In this way, our work shows a more consistent approach to determine the transport properties of solid electrolytes and, therefore, provides a more reliable tool to analyze the transport properties of heterogeneous solid electrolytes that can be used in electrochemical devices, including fuel cells and supercapacitors.

10.
Phys Chem Chem Phys ; 20(15): 10173-10184, 2018 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-29594295

RESUMO

The conductivity of a series of composite membranes, based on polybenzimidazole (PBI) containing the metallacarborane salt M[Co(C2B9H11)2], M[COSANE] and tetraphenylborate, M[B(C6H5)4], M[TPB] both anions having the same number of atoms and the same negative charge, has been investigated. Different cations (M = H+, Li+ and Na+) have been studied and the composite membranes have been characterized by water uptake, swelling ratios, ATR FT-IR, thermogravimetric analysis and electrochemical impedance spectroscopy to explore the dielectric response and ion dynamics in composite membranes. Our results show that conductivity increases with increasing temperature and it is higher for H+ than for Li+ and Na+ for all temperatures under study. The mobility of Li+ is greater in [COSANE]- than in [TPB]- composite PBI@membranes while for Na+ it is the opposite. The temperature dependence of the conductivity of the composite was followed by a typical Arrhenius behaviour with two different regions: (1) between 20 and 100 °C, and (2) between 100 and 150 °C. Using the analysis of electrode polarization (EP) based on the Thrukhan theory we have calculated the ionic diffusion coefficients and the density of carriers. From the double logarithmic plot of the imaginary part of the conductivity (σ'') versus frequency in the entire range of temperatures studied we have determined for each sample at each temperature, the frequency values of the onset (fON) and full development of electrode polarization (fMAX), respectively, which permit us to calculate static permittivity.

11.
Phys Chem Chem Phys ; 19(23): 15177-15186, 2017 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-28561085

RESUMO

The development of new types of ion conducting materials is one of the most important challenges in the field of energy. Lithium salt polymer electrolytes have been the most convenient, and thus the most widely used in the design of the new generation of batteries. However, in this work, we have observed that Na+ ions provide a higher conductivity, or at least a comparable conductivity to that of Li+ ions in the same basic material. This provides an excellent possibility to use Na+ ions in the design of a new generation of batteries, instead of lithium, to enhance conductivity and ensure wide supply. Our results indicate that the dc-conductivity is larger when the anion is [Co(C2B9H11)2]-, [COSANE]-, compared to tetraphenylborate, [TPB]-. Our data also prove that the dc-conductivity behavior of Li+ and Na+ salts is opposite with the two anions. At 40 °C, the conductivity values change from 1.05 × 10-2 S cm-1 (Li[COSANE]) and 1.75 × 10-2 S cm-1 (Na[COSANE]) to 2.8 × 10-3 S cm-1 (Li[TPB]) and 1.5 × 10-3 S cm-1 (Na[TPB]). These findings indicate that metallacarboranes can be useful components of mixed matrix membranes (MMMs), providing excellent conductivity when the medium contains sufficient amounts of ionic components and a certain degree of humidity.

12.
Optom Vis Sci ; 94(6): 672-679, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28514247

RESUMO

PURPOSE: Oxygen is essential for aerobic mammalian cell physiology. Oxygen tension (PO2) should reach a minimum at some position within the corneal stroma, and oxygen flux should be zero, by definition, at this point as well. We found the locations and magnitudes of this "corneal equilibrium flux" (xmin) and explored its physiological implications. METHODS: We used an application of the Monod kinetic model to calculate xmin for normal human cornea as anterior surface PO2 changes from 155 to 20 mmHg. RESULTS: We find that xmin deepens, broadens, and advances from 1.25 µm above the endothelial-aqueous humor surface toward the epithelium (reaching a position 320 µm above the endothelial-aqueous humor surface) as anterior corneal surface PO2 decreases from 155 to 20 mmHg. CONCLUSIONS: Our model supports an anterior corneal oxygen flux of 9 µL O2 · cm · h and an epithelial oxygen consumption of approximately 4 µL O2 · cm · h. Only at the highest anterior corneal PO2 does our model predict that oxygen diffuses all the way through the cornea to perhaps reach the anterior chamber. Of most interest, corneal oxygen consumption should be supported down to a corneal surface PO2 of 60 to 80 mmHg but declines below this range. We conclude that the critical oxygen tension for hypoxia induced corneal swelling is more likely this range rather than a fixed value.


Assuntos
Córnea/metabolismo , Modelos Teóricos , Consumo de Oxigênio/fisiologia , Oxigênio/metabolismo , Humor Aquoso/metabolismo , Humanos
13.
Optom Vis Sci ; 93(11): 1339-1348, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27741084

RESUMO

PURPOSE: The main goal of this current work is to use an updated calculation paradigm, and updated boundary conditions, to provide theoretical guidelines to assist the clinician whose goal is to improve his or her scleral gas permeable (GP) contact lens wearing patients' anterior corneal oxygen supply. METHODS: Our model uses a variable value of corneal oxygen consumption developed through Monod equations that disallows negative oxygen tensions within the stroma to predict oxygen tension at the anterior corneal surface of scleral GP contact lens wearing eyes, and to describe oxygen tension and flux profiles, for various boundary conditions, through the lens, tears, and cornea. We use several updated tissue and boundary parameters in our model. Tear exchange with GP scleral lenses is considered nonexistent in this model. RESULTS: The majority of current scleral GP contact lenses should produce some levels of corneal hypoxia under open eye conditions. Only lenses producing the thinnest of tear vaults should result in anterior corneal surface oxygen tensions greater than a presumed critical oxygen tension of 100 mmHg. We also find that corneal oxygen tension and flux are each more sensitive to modification in tear vault than to changes in lens oxygen permeability, within the ranges of current clinical manipulation. CONCLUSIONS: Our study suggests that clinicians would be prudent to prescribe scleral GP lenses manufactured from higher oxygen permeability materials and especially to fit without excessive corneal clearance.


Assuntos
Lentes de Contato , Córnea/metabolismo , Modelos Teóricos , Consumo de Oxigênio/fisiologia , Oxigênio/metabolismo , Esclera , Humanos , Lágrimas/fisiologia
14.
Nanoscale Adv ; 6(10): 2669-2681, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38752140

RESUMO

Protein-based materials have emerged as promising candidates for proton-conducting biomaterials. Therefore, drawing inspiration from the amino acid composition of prion-like domains, we designed short self-assembling peptides incorporating the (X-Tyr) motif, with X representing Asn, Gly and Ser, which form fibrillar structures capable of conducting protons. In this study, we conducted an analysis of the conductivity capacity of these fibers, with a focus on temperature and frequency dependence of conductivity. The loss tangent curves data and the electrode polarization model with the Debye approximation were employed to calculate transport properties, including conductivity, diffusivity, and density of charge carriers. Results revealed the prion-like fibers can transport protons more efficiently than biomaterials and other synthetic proton conducting materials, and that a significant increase in conductivity is observed with fibrillar orientations. The temperature dependence of conductivity of the peptides, measured in wet conditions, showed conductivities following the trend σ(NY7) < σ(GY7) < σ(SY7), in all the range of temperatures studied. The Arrhenius behavior, and the activation energy associated with conductivity followed the trend: Eact (SY7) = 8.2 ± 0.6 kJ mol-1 < Eact (GY7) < 13 ± 5 kJ mol-1 < Eact (NY7) = 31 ± 7 kJ mol-1, in different range of temperatures depending of the peptide. Furthermore, the diffusion coefficient correlated with increasing temperature in GY7 and SY7 fibers for temperatures compress between 20 °C and 80 °C, while NY7 only below 60 °C. However, it is noteworthy that the diffusivity observed in the SY7 peptide is lower, compared to GY7 and NY7 presumably due to its enlarged length. This observation can be attributed to two factors: firstly, the higher conductivity values observed in SY7 compared to GY7 and NY7, and secondly, to the value of relation observed of cations present in the peptide SY7 compared with GY7 and NY7, which in turn is dependent on temperature. In light of these findings, we envision our prion-inspired nanofibers as highly efficient proton-conducting natural biopolymers that are both biocompatible and biodegradable. These properties provide the opportunity for the development of next-generation bioelectrical interfaces and protonic devices.

15.
J Biomed Mater Res B Appl Biomater ; 111(3): 610-621, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36214217

RESUMO

We perform a novel 3D study to quantify the corneal oxygen consumption and diffusion in each part of the cornea with different contact lens materials. The oxygen profile is calculated as a function of oxygen tension at the cornea-tear interface and the oxygen transmissibility of the lens, with values used in previous studies. We aim to determine the influence of a detailed geometry of the cornea in their modeling compared to previous low dimensional models used in the literature. To this end, a 3-D study based on an axisymmetric volume element analysis model was applied to different contact lenses currently on the market. We have obtained that the model provides a valuable tool for understanding the flux and cornea oxygen profiles through the epithelium, stroma, and endothelium. The most important results are related to the dependence of the oxygen flux through the cornea-lens system on the contact lens thickness and geometry. Both parameters play an important role in the corneal flux and oxygen tension distribution. The decline in oxygen consumption experienced by the cornea takes place just inside the epithelium, where the oxygen tension falls to between 95 and 16 mmHg under open eye conditions, and 30 to 0.3 mmHg under closed eye conditions, depending on the contact lens worn. This helps to understand the physiological response of the corneal tissue under conditions of daily and overnight contact lens wear, and the importance of detailed geometry of the cornea in the modeling of diffusion for oxygen and other species.


Assuntos
Lentes de Contato Hidrofílicas , Lentes de Contato , Humanos , Córnea , Oxigênio , Pálpebras , Consumo de Oxigênio/fisiologia
16.
ACS Appl Polym Mater ; 5(8): 6081-6094, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-38344007

RESUMO

Electroconductive materials based on poly(lactic acid) (PLA) electrospinning membranes grafted with carbon nanotubes (CNTs) functionalized with the carboxylic group R-COOH have been obtained. PLA electrospun membranes were modified with sulfuric acid (H2SO4) to oxidize its surface to subsequently graft the CNTs, the treatment time and drying of the membranes before grafting with CNTs being critical, influencing the final properties of the materials. SEM images showed that CNTs presented a uniform distribution on the surface of the PLA nanofibers, while FTIR spectra of PLA-CNTs materials revealed characteristic hydroxyl groups, as evidenced by absorption peaks of CNTs. Thanks to the grafting with CNTs, the resulting PLA-CNTs membranes present an improvement of the mechanical and conductive properties when compared with PLA membranes. On the one hand, grafting with CNTs causes the nanofibers to have greater rigidity, so they are more manipulable and can more easily preserve their conformation when stress is exerted. On the other hand, grafting with CNTs allows elimination of the insulating barrier of the PLA, reducing the resistivity and providing high electrical conductivity to the PLA-CNTs membranes. The incorporation of CNTs into PLA electrospun membranes is expected to offer greater functionalities to electrospun composite nanofibers for medical and industrial applications.

17.
Nanomaterials (Basel) ; 13(16)2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37630896

RESUMO

A novel manufacturing process is presented for producing nanopowders and thin films of CuCoO2 (CCO) material. This process utilizes three cost-effective synthesis methods: hydrothermal, sol-gel, and solid-state reactions. The resulting delafossite CuCoO2 samples were deposited onto transparent substrates through spray pyrolysis, forming innovative thin films with a nanocrystal powder structure. Prior to the transformation into thin films, CuCoO2 powder was first produced using a low-cost approach. The precursors for both powders and thin films were deposited onto glass surfaces using a spray pyrolysis process, and their characteristics were examined through X-ray diffraction, scanning electron microscopy, HR-TEM, UV-visible spectrophotometry, and electrochemical impedance spectroscopy (EIS) analyses were conducted to determine the conductivity in the transversal direction of this groundbreaking material for solar cell applications. On the other hand, the sheet resistance of the samples was investigated using the four-probe method to obtain the sheet resistivity and then calculate the in-plane conductivity of the samples. We also investigated the aging characteristics of different precursors with varying durations. The functional properties of CuCoO2 samples were explored by studying chelating agent and precursor solution aging periods using Density Functional Theory calculations (DFT). A complementary Density Functional Theory study was also performed in order to evaluate the electronic structure of this compound. Resuming, this study thoroughly discusses the synthesis of delafossite powders and their conversion into thin films, which hold potential as hole transport layers in transparent optoelectronic devices.

18.
Polymers (Basel) ; 14(21)2022 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-36365494

RESUMO

In this work, we report the preparation of Nafion membranes containing two different nanocomposite MF-4SC membranes, modified with polyaniline (PANI) by the casting method through two different polyaniline infiltration procedures. These membranes were evaluated as a polymer electrolyte membrane for water electrolysis. Operating conditions were optimized in terms of current density, stability, and methanol concentration. A study was made on the effects on the cell performance of various parameters, such as methanol concentration, water, and cell voltage. The energy required for pure water electrolysis was analyzed at different temperatures for the different membranes. Our experiments showed that PEM electrolyzers provide hydrogen production of 30 mL/min, working at 160 mA/cm2. Our composite PANI membranes showed an improved behavior over pristine perfluorinated sulfocationic membranes (around 20% reduction in specific energy). Methanol-water electrolysis required considerably less (around 65%) electrical power than water electrolysis. The results provided the main characteristics of aqueous methanol electrolysis, in which the power consumption is 2.34 kW h/kg of hydrogen at current densities higher than 0.5 A/cm2. This value is ~20-fold times lower than the electrical energy required to produce 1 kg of hydrogen by water electrolysis.

19.
ACS Omega ; 7(42): 37954-37963, 2022 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-36312350

RESUMO

In this work, poly(vinyl alcohol) (PVOH)/graphene (GN) oxide/clay aerogels were prepared using montmorillonite (MMT) and kaolinite (KLT) as fillers. This work paves the way for the development of aerogels filled with MMT or KLT with high conductivity. The mechanical properties of the polymer/clay aerogels are enhanced by incorporating GN into these systems. These composite materials have an enhanced thermal stability, and the combination of PVOH and GN leads to interconnected channels which favored the conductivity when a clay (MMT or KLT) is added to the mixed PVOH/GN matrix. However, after compressing the samples, the conductivities drastically decreased. These results show that the design of solid MMT/GN and KLT/GN composites as aerogels allows maximizing the space utilization of the electrode volume to achieve unhindered ion transport, which seems contrary to the general design principle of electrode materials where a suitable porous structure is desired, such as in our uncompressed samples. These findings also demonstrate the potential of these materials in electrodes, sensors, batteries, pressure-sensing applications, and supercapacitors.

20.
Chemistry ; 17(6): 1894-906, 2011 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-21274940

RESUMO

The physico-chemical properties of polymers with ionic-liquid-like moieties covalently bound to their surfaces (SILLPs) have been studied by thermal and spectroscopic techniques, as well as by direct impedance and dielectric measurements, and compared to those of the corresponding bulk ionic liquids. The effective transfer of properties from ionic liquids in solution to the supported species has thereby been demonstrated. The effects of the chemical nature of these tunable "solid solvents" on their macroscopic swelling and microwave heating, as well as the stabilities and activities of different catalytic moieties immobilized on the SILLPs, have been studied. Finally, the experimental effect observed in microwave heating can be directly correlated with the values of tan δ derived from dielectric measurements.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA