Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
BMC Genomics ; 14: 230, 2013 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-23565803

RESUMO

BACKGROUND: Mycobacterium bovis, the causative agent of bovine tuberculosis, is an intracellular pathogen that can persist inside host macrophages during infection via a diverse range of mechanisms that subvert the host immune response. In the current study, we have analysed and compared the transcriptomes of M. bovis-infected monocyte-derived macrophages (MDM) purified from six Holstein-Friesian females with the transcriptomes of non-infected control MDM from the same animals over a 24 h period using strand-specific RNA sequencing (RNA-seq). In addition, we compare gene expression profiles generated using RNA-seq with those previously generated by us using the high-density Affymetrix® GeneChip® Bovine Genome Array platform from the same MDM-extracted RNA. RESULTS: A mean of 7.2 million reads from each MDM sample mapped uniquely and unambiguously to single Bos taurus reference genome locations. Analysis of these mapped reads showed 2,584 genes (1,392 upregulated; 1,192 downregulated) and 757 putative natural antisense transcripts (558 upregulated; 119 downregulated) that were differentially expressed based on sense and antisense strand data, respectively (adjusted P-value ≤ 0.05). Of the differentially expressed genes, 694 were common to both the sense and antisense data sets, with the direction of expression (i.e. up- or downregulation) positively correlated for 693 genes and negatively correlated for the remaining gene. Gene ontology analysis of the differentially expressed genes revealed an enrichment of immune, apoptotic and cell signalling genes. Notably, the number of differentially expressed genes identified from RNA-seq sense strand analysis was greater than the number of differentially expressed genes detected from microarray analysis (2,584 genes versus 2,015 genes). Furthermore, our data reveal a greater dynamic range in the detection and quantification of gene transcripts for RNA-seq compared to microarray technology. CONCLUSIONS: This study highlights the value of RNA-seq in identifying novel immunomodulatory mechanisms that underlie host-mycobacterial pathogen interactions during infection, including possible complex post-transcriptional regulation of host gene expression involving antisense RNA.


Assuntos
Interações Hospedeiro-Patógeno/genética , Macrófagos/microbiologia , Transcriptoma , Tuberculose Bovina/genética , Animais , Bovinos , Feminino , Regulação da Expressão Gênica , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Mycobacterium bovis , Análise de Sequência de RNA
2.
Sci Rep ; 5: 13629, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26346536

RESUMO

Mycobacterium bovis, the agent of bovine tuberculosis, causes an estimated $3 billion annual losses to global agriculture due, in part, to the limitations of current diagnostics. Development of next-generation diagnostics requires a greater understanding of the interaction between the pathogen and the bovine host. Therefore, to explore the early response of the alveolar macrophage to infection, we report the first application of RNA-sequencing to define, in exquisite detail, the transcriptomes of M. bovis-infected and non-infected alveolar macrophages from ten calves at 2, 6, 24 and 48 hours post-infection. Differentially expressed sense genes were detected at these time points that revealed enrichment of innate immune signalling functions, and transcriptional suppression of host defence mechanisms (e.g., lysosome maturation). We also detected differentially expressed natural antisense transcripts, which may play a role in subverting innate immune mechanisms following infection. Furthermore, we report differential expression of novel bovine genes, some of which have immune-related functions based on orthology with human proteins. This is the first in-depth transcriptomics investigation of the alveolar macrophage response to the early stages of M. bovis infection and reveals complex patterns of gene expression and regulation that underlie the immunomodulatory mechanisms used by M. bovis to evade host defence mechanisms.


Assuntos
Interações Hospedeiro-Patógeno/genética , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/microbiologia , Mycobacterium bovis/imunologia , Tuberculose Bovina/genética , Tuberculose Bovina/imunologia , Animais , Gatos , Bovinos , Biologia Computacional/métodos , RNA Helicases DEAD-box/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Interações Hospedeiro-Patógeno/imunologia , Lisossomos/metabolismo , Macrófagos Alveolares/imunologia , Masculino , Anotação de Sequência Molecular , Receptores Citoplasmáticos e Nucleares/metabolismo , Reprodutibilidade dos Testes , Transdução de Sinais , Transcriptoma , Tuberculose Bovina/microbiologia
3.
Tuberculosis (Edinb) ; 95(1): 60-7, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25692199

RESUMO

Mycobacterium bovis, the causative agent of bovine tuberculosis, a major problem for global agriculture, spreads via an airborne route and is taken up by alveolar macrophages (AM) in the lung. Here, we describe the first next-generation sequencing (RNA-seq) approach to temporally profile miRNA expression in primary bovine AMs post-infection with M. bovis. One, six, and forty miRNAs were identified as significantly differentially expressed at 2, 24 and 48 h post-infection, respectively. The differential expression of three miRNAs (bta-miR-142-5p, bta-miR-146a, and bta-miR-423-3p) was confirmed by RT-qPCR. Pathway analysis of the predicted mRNA targets of differentially expressed miRNAs suggests that these miRNAs preferentially target several pathways that are functionally relevant for mycobacterial pathogenesis, including endocytosis and lysosome trafficking, IL-1 signalling and the TGF-ß pathway. Over-expression studies using a bovine macrophage cell-line (Bomac) reveal the targeting of two key genes in the innate immune response to M. bovis, IL-1 receptor-associated kinase 1 (IRAK1) and TGF-ß receptor 2 (TGFBR2), by miR-146. Taken together, our study suggests that miRNAs play a key role in tuning the complex interplay between M. bovis survival strategies and the host immune response.


Assuntos
Macrófagos Alveolares/imunologia , MicroRNAs/fisiologia , Mycobacterium bovis/imunologia , Tuberculose Bovina/imunologia , Tuberculose Pulmonar/imunologia , Animais , Bovinos , Células Cultivadas , Regulação para Baixo , Endocitose/imunologia , Expressão Gênica/genética , Expressão Gênica/imunologia , Perfilação da Expressão Gênica/métodos , Imunidade Inata/imunologia , Quinases Associadas a Receptores de Interleucina-1/antagonistas & inibidores , Lisossomos/imunologia , Masculino , MicroRNAs/genética , MicroRNAs/imunologia , RNA Bacteriano/genética , RNA Bacteriano/imunologia , Reação em Cadeia da Polimerase em Tempo Real/métodos , Análise de Sequência de RNA/métodos , Transfecção/métodos , Fator de Crescimento Transformador beta2/antagonistas & inibidores , Regulação para Cima
4.
FEMS Microbiol Lett ; 216(2): 171-7, 2002 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-12435499

RESUMO

LightCycler and conventional reverse transcription-polymerase chain reaction (RT-PCR) were used to examine regulation of icaR, which encodes a repressor of the Staphylococcus epidermidis ica operon. Varying concentrations of NaCl and ethanol activated ica but only high levels of both compounds repressed icaR transcription. Activation of ica by subinhibitory concentrations of tetracycline, which was strain-dependent, was also associated with icaR repression. In an ICAR::Em mutant, NaCl but not ethanol activated ica whereas both compounds repressed icaR expression indicating that environmental regulation of the icaR gene is IcaR-independent. Apparently ethanol signals exclusively through IcaR to activate ica and regulates IcaR at the transcriptional and posttranscriptional levels. NaCl also regulates icaR expression but in addition can activate ica via an icaR-independent pathway.


Assuntos
Proteínas de Bactérias/genética , Biofilmes , Regulação Bacteriana da Expressão Gênica , Staphylococcus epidermidis/genética , Meio Ambiente , Regulação Bacteriana da Expressão Gênica/efeitos dos fármacos , Mutagênese Insercional/fisiologia , Proteínas Repressoras/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Staphylococcus epidermidis/efeitos dos fármacos , Staphylococcus epidermidis/fisiologia , Tetraciclina/farmacologia , Transcrição Gênica/genética
5.
mBio ; 5(4): e01169-14, 2014 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-25096875

RESUMO

Related species are often used to understand the molecular underpinning of virulence through examination of a shared set of biological features attributable to a core genome of orthologous genes. An important but insufficiently studied issue, however, is the extent to which the regulatory architectures are similarly conserved. A small number of studies have compared the primary transcriptomes of different bacterial species, but few have compared closely related species with clearly divergent evolutionary histories. We addressed the impact of differing modes of evolution within the genus Mycobacterium through comparison of the primary transcriptome of M. marinum with that of a closely related lineage, M. bovis. Both are thought to have evolved from an ancestral generalist species, with M. bovis and other members of the M. tuberculosis complex having subsequently undergone downsizing of their genomes during the transition to obligate pathogenicity. M. marinum, in contrast, has retained a large genome, appropriate for an environmental organism, and is a broad-host-range pathogen. We also examined changes over a shorter evolutionary time period through comparison of the primary transcriptome of M. bovis with that of another member of the M. tuberculosis complex (M. tuberculosis) which possesses an almost identical genome but maintains a distinct host preference. Importance: Our comparison of the transcriptional start site (TSS) maps of M. marinum and M. bovis uncovers a pillar of conserved promoters, noncoding RNA (NCRNA), and a genome-wide signal in the -35 promoter regions of both species. We identify evolutionarily conserved transcriptional attenuation and highlight its potential contribution to multidrug resistance mediated through the transcriptional regulator whiB7. We show that a species population history is reflected in its transcriptome and posit relaxed selection as the main driver of an abundance of canonical -10 promoter sites in M. bovis relative to M. marinum. It appears that transcriptome composition in mycobacteria is driven primarily by the availability of such sites and that their frequencies diverge significantly across the mycobacterial clade. Finally, through comparison of M. bovis and M. tuberculosis, we illustrate that single nucleotide polymorphism (SNP)-driven promoter differences likely underpin many of the transcriptional differences between M. tuberculosis complex lineages.


Assuntos
Mycobacterium tuberculosis/genética , Transcriptoma/genética , Evolução Molecular , Genoma Bacteriano/genética , Polimorfismo de Nucleotídeo Único/genética , Regiões Promotoras Genéticas/genética
6.
Front Immunol ; 5: 422, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25324841

RESUMO

Mycobacterium bovis is an intracellular pathogen that causes tuberculosis in cattle. Following infection, the pathogen resides and persists inside host macrophages by subverting host immune responses via a diverse range of mechanisms. Here, a high-density bovine microarray platform was used to examine the bovine monocyte-derived macrophage transcriptome response to M. bovis infection relative to infection with the attenuated vaccine strain, M. bovis Bacille Calmette-Guérin. Differentially expressed genes were identified (adjusted P-value ≤0.01) and interaction networks generated across an infection time course of 2, 6, and 24 h. The largest number of biological interactions was observed in the 24-h network, which exhibited scale-free network properties. The 24-h network featured a small number of key hub and bottleneck gene nodes, including IKBKE, MYC, NFKB1, and EGR1 that differentiated the macrophage response to virulent and attenuated M. bovis strains, possibly via the modulation of host cell death mechanisms. These hub and bottleneck genes represent possible targets for immuno-modulation of host macrophages by virulent mycobacterial species that enable their survival within a hostile environment.

7.
Tuberculosis (Edinb) ; 94(4): 441-50, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24882682

RESUMO

Despite sharing >99.9% genome sequence similarity at the nucleotide level, Mycobacterium tuberculosis and Mycobacterium bovis-the causative agents of human and bovine tuberculosis, respectively-exhibit distinct host preferences. M. bovis can cause disease in both cattle and humans yet rarely transmits between immuno-competent human hosts, while M. tuberculosis is a highly successful pathogen of humans that does not sustain in animal populations. Based on the key role played by alveolar macrophages during mycobacterial infection, we hypothesised that the immunological and pathological differences observed in cattle infected with virulent M. bovis and M. tuberculosis may have a basis in innate immune mechanisms; these differences, in turn, would be reflected at the macrophage mRNA and protein level. To investigate this, we have analysed the transcriptional profile of innate immune genes in bovine alveolar macrophages following 24 and 48 h infection with the genome-sequenced strains, M. bovis AF2122/97 and M. tuberculosis H37Rv. A bespoke multiplex ELISA was also used to quantify corresponding cytokine secretion in supernatants from the same infected alveolar macrophages. All cytokines showed similar significant patterns of expression (i.e., up- or down-regulation) at both the mRNA and protein levels in infected macrophages relative to parallel non-infected controls at the two time points (P ≤ 0.05). However, significant upregulation and downregulation of several innate immune genes-including TLR2, FOS, PIK3IP1, CCL4, IL1B, IL6 and TNF-and the CCL-4 protein was observed in the M. bovis-infected macrophages relative to the M. tuberculosis-infected macrophages 48 h post-infection (P ≤ 0.05). These results support the hypothesis that the divergent virulence of M. bovis and M. tuberculosis in cattle has a basis in innate immune mechanisms, which may contribute to host preference within the M. tuberculosis complex of strains.


Assuntos
Citocinas/biossíntese , Macrófagos Alveolares/imunologia , Mycobacterium bovis/patogenicidade , Mycobacterium tuberculosis/patogenicidade , Tuberculose Bovina/imunologia , Animais , Bovinos , Células Cultivadas , Citocinas/genética , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica/imunologia , Imunidade Inata/genética , Macrófagos Alveolares/microbiologia , Masculino , Mycobacterium bovis/imunologia , Mycobacterium tuberculosis/imunologia , RNA Mensageiro/genética , Tuberculose Bovina/genética , Tuberculose Bovina/microbiologia , Virulência/genética
8.
Vet Immunol Immunopathol ; 155(4): 238-44, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24021155

RESUMO

MicroRNAs (miRNAs) are important regulators of gene expression and are known to play a key role in regulating both adaptive and innate immunity. Bovine alveolar macrophages (BAMs) help maintain lung homeostasis and constitute the front line of host defense against several infectious respiratory diseases, such as bovine tuberculosis. Little is known, however, about the role miRNAs play in these cells. In this study, we used a high-throughput sequencing approach, RNA-seq, to determine the expression levels of known and novel miRNAs in unchallenged BAMs isolated from lung lavages of eight different healthy Holstein-Friesian male calves. Approximately 80 million sequence reads were generated from eight BAM miRNA Illumina sequencing libraries, and 80 miRNAs were identified as being expressed in BAMs at a threshold of at least 100 reads per million (RPM). The expression levels of miRNAs varied over a large dynamic range, with a few miRNAs expressed at very high levels (up to 800,000RPM), and the majority lowly expressed. Notably, many of the most highly expressed miRNAs in BAMs have known roles in regulating immunity in other species (e.g. bta-let-7i, bta-miR-21, bta-miR-27, bta-miR-99b, bta-miR-146, bta-miR-147, bta-miR-155 and bta-miR-223). The most highly expressed miRNA in BAMs was miR-21, which has been shown to regulate the expression of antimicrobial peptides in Mycobacterium leprae-infected human monocytes. Furthermore, the predicted target genes of BAM-expressed miRNAs were found to be statistically enriched for roles in innate immunity. In addition to profiling the expression of known miRNAs, the RNA-seq data was also analysed to identify potentially novel bovine miRNAs. One putatively novel bovine miRNA was identified. To the best of our knowledge, this is the first RNA-seq study to profile miRNA expression in BAMs and provides an important reference dataset for investigating the regulatory roles miRNAs play in this important immune cell type.


Assuntos
Imunidade Adaptativa/imunologia , Bovinos/imunologia , Imunidade Inata/imunologia , Pulmão/imunologia , Macrófagos Alveolares/imunologia , MicroRNAs/imunologia , Imunidade Adaptativa/genética , Animais , Líquido da Lavagem Broncoalveolar/citologia , Líquido da Lavagem Broncoalveolar/imunologia , Imunidade Inata/genética , Pulmão/citologia , Macrófagos Alveolares/citologia , Masculino , MicroRNAs/genética , Análise de Sequência de RNA/veterinária
9.
PLoS One ; 7(2): e32034, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22384131

RESUMO

BACKGROUND: Mycobacterium bovis, the causative agent of bovine tuberculosis, is a major cause of mortality in global cattle populations. Macrophages are among the first cell types to encounter M. bovis following exposure and the response elicited by these cells is pivotal in determining the outcome of infection. Here, a functional genomics approach was undertaken to investigate global gene expression profiles in bovine monocyte-derived macrophages (MDM) purified from seven age-matched non-related females, in response to in vitro challenge with M. bovis (multiplicity of infection 2:1). Total cellular RNA was extracted from non-challenged control and M. bovis-challenged MDM for all animals at intervals of 2 hours, 6 hours and 24 hours post-challenge and prepared for global gene expression analysis using the Affymetrix® GeneChip® Bovine Genome Array. RESULTS: Comparison of M. bovis-challenged MDM gene expression profiles with those from the non-challenged MDM controls at each time point identified 3,064 differentially expressed genes 2 hours post-challenge, with 4,451 and 5,267 differentially expressed genes detected at the 6 hour and 24 hour time points, respectively (adjusted P-value threshold ≤ 0.05). Notably, the number of downregulated genes exceeded the number of upregulated genes in the M. bovis-challenged MDM across all time points; however, the fold-change in expression for the upregulated genes was markedly higher than that for the downregulated genes. Systems analysis revealed enrichment for genes involved in: (1) the inflammatory response; (2) cell signalling pathways, including Toll-like receptors and intracellular pathogen recognition receptors; and (3) apoptosis. CONCLUSIONS: The increased number of downregulated genes is consistent with previous studies showing that M. bovis infection is associated with the repression of host gene expression. The results also support roles for MyD88-independent signalling and intracellular PRRs in mediating the host response to M. bovis.


Assuntos
Regulação da Expressão Gênica , Monócitos/citologia , Mycobacterium bovis/metabolismo , Animais , Bovinos , Feminino , Perfilação da Expressão Gênica , Genoma , Granuloma/metabolismo , Técnicas In Vitro , Macrófagos/citologia , Macrófagos/microbiologia , Monócitos/microbiologia , Análise de Sequência com Séries de Oligonucleotídeos , RNA/metabolismo , Transdução de Sinais , Biologia de Sistemas , Transcriptoma , Tuberculose Bovina/microbiologia
10.
J Bacteriol ; 186(18): 6208-19, 2004 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-15342591

RESUMO

Expression of ica operon-mediated biofilm formation in Staphylococcus epidermidis RP62A is subject to phase variable regulation. Reversible transposition of IS256 into icaADBC or downregulation of icaADBC expression are two important mechanisms of biofilm phenotypic variation. Interestingly, the presence of IS256 was generally associated with a more rapid rate of phenotypic variation, suggesting that IS256 insertions outside the ica locus may affect ica transcription. Consistent with this, we identified variants with diminished ica expression, which were associated with IS256 insertions in the sigmaB activator rsbU or sarA. Biofilm development and ica expression were activated only by ethanol and not NaCl in rsbU::IS256 insertion variants, which were present in approximately 11% of all variants. sigmaB activity was impaired in rsbU::IS256 variants, as evidenced by reduced expression of the sigmaB-regulated genes asp23, csb9, and rsbV. Moreover, expression of sarA, which is sigmaB regulated, and SarA-regulated RNAIII were also suppressed. A biofilm-forming phenotype was restored to rsbU::IS256 variants only after repeated passage and was not associated with IS256 excision from rsbU. Only one sarA::IS256 insertion mutant was identified among 43 biofilm-negative variants. Both NaCl and ethanol-activated ica expression in this sarA::IS256 variant, but only ethanol increased biofilm development. Unlike rsbU::IS256 variants, reversion of the sarA::IS256 variant to a biofilm-positive phenotype was accompanied by precise excision of IS256 from sarA and restoration of normal ica expression. These data identify new roles for IS256 in ica and biofilm phenotypic variation and demonstrate the capacity of this element to influence the global regulation of transcription in S. epidermidis.


Assuntos
Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Elementos de DNA Transponíveis , Regulação Bacteriana da Expressão Gênica , Monoéster Fosfórico Hidrolases/genética , Staphylococcus epidermidis/fisiologia , Transativadores/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Etanol/farmacologia , Substâncias de Crescimento/farmacologia , Dados de Sequência Molecular , Mutagênese Insercional , Monoéster Fosfórico Hidrolases/metabolismo , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Bacteriano/análise , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/análise , Fator sigma/genética , Fator sigma/metabolismo , Cloreto de Sódio/farmacologia , Staphylococcus epidermidis/genética , Staphylococcus epidermidis/crescimento & desenvolvimento , Transativadores/metabolismo , Transcrição Gênica
11.
J Bacteriol ; 184(16): 4400-8, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12142410

RESUMO

Biofilm formation in Staphylococcus epidermidis is dependent upon the ica operon-encoded polysaccharide intercellular adhesin, which is subject to phase-variable and environmental regulation. The icaR gene, located adjacent to the ica operon, appears to be a member of the tetR family of transcriptional regulators. In the reference strain RP62A, reversible inactivation of the ica operon by IS256 accounts for 25 to 33% of phase variants. In this study, icaA and icaR regulation were compared in RP62A and a biofilm-forming clinical isolate, CSF41498, in which IS256 is absent. Predictably, ica operon expression was detected only in wild-type CSF41498 and RP62A but not in non-IS256-generated phase variants. In contrast, the icaR gene was not expressed in RP62A phase variants but was expressed in CSF41498 variants. An icaR::Em(r) insertion mutation in CSF41498 resulted in an at least a 5.8-fold increase in ica operon expression but did not significantly alter regulation of the icaR gene itself. Activation of ica operon transcription by ethanol in CSF41498 was icaR dependent. In contrast, a small but significant induction of ica by NaCl and glucose (NaCl-glucose) was observed in the icaR::Em(r) mutant. In addition, transcription of the icaR gene itself was not significantly affected by NaCl-glucose but was repressed by ethanol. Expression of the ica operon was induced by ethanol or NaCl-glucose in phase variants of CSF41498 (icaR+) but not in RP62A variants (icaR deficient). These data indicate that icaR encodes a repressor of ica operon transcription required for ethanol but not NaCl-glucose activation of ica operon expression and biofilm formation.


Assuntos
Biofilmes , Polissacarídeos Bacterianos/genética , Staphylococcus epidermidis/crescimento & desenvolvimento , Staphylococcus epidermidis/genética , Meio Ambiente , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Mutagênese Insercional/fisiologia , Óperon/genética , Proteínas Repressoras/genética , Transcrição Gênica/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA