Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(17): e2319607121, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38635635

RESUMO

The development of seizures in epilepsy syndromes associated with malformations of cortical development (MCDs) has traditionally been attributed to intrinsic cortical alterations resulting from abnormal network excitability. However, recent analyses at single-cell resolution of human brain samples from MCD patients have indicated the possible involvement of adaptive immunity in the pathogenesis of these disorders. By exploiting the MethylAzoxyMethanol (MAM)/pilocarpine (MP) rat model of drug-resistant epilepsy associated with MCD, we show here that the occurrence of status epilepticus and subsequent spontaneous recurrent seizures in the malformed, but not in the normal brain, are associated with the outbreak of a destructive autoimmune response with encephalitis-like features, involving components of both cell-mediated and humoral immune responses. The MP brain is characterized by blood-brain barrier dysfunction, marked and persisting CD8+ T cell invasion of the brain parenchyma, meningeal B cell accumulation, and complement-dependent cytotoxicity mediated by antineuronal antibodies. Furthermore, the therapeutic treatment of MP rats with the immunomodulatory drug fingolimod promotes both antiepileptogenic and neuroprotective effects. Collectively, these data show that the MP rat could serve as a translational model of epileptogenic cortical malformations associated with a central nervous system autoimmune response. This work indicates that a preexisting brain maldevelopment predisposes to a secondary autoimmune response, which acts as a precipitating factor for epilepsy and suggests immune intervention as a therapeutic option to be further explored in epileptic syndromes associated with MCDs.


Assuntos
Epilepsia , Acetato de Metilazoximetanol/análogos & derivados , Pilocarpina , Ratos , Humanos , Animais , Autoimunidade , Epilepsia/induzido quimicamente , Epilepsia/patologia , Convulsões/patologia , Encéfalo/patologia , Modelos Animais de Doenças
2.
Eur J Clin Microbiol Infect Dis ; 43(5): 895-904, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38472522

RESUMO

PURPOSE: Campylobacter is a frequent cause of enteric infections with common antimicrobial resistance issues. The most recent reports of campylobacteriosis in Italy include data from 2013 to 2016. We aimed to provide national epidemiological and microbiological data on human Campylobacter infections in Italy during the period 2017-2021. METHODS: Data was collected from 19 Hospitals in 13 Italian Regions. Bacterial identification was performed by mass spectrometry. Antibiograms were determined with Etest or Kirby-Bauer (EUCAST criteria). RESULTS: In total, 5419 isolations of Campylobacter spp. were performed. The most common species were C. jejuni (n = 4535, 83.7%), followed by C. coli (n = 732, 13.5%) and C. fetus (n = 34, 0.6%). The mean age of patients was 34.61 years and 57.1% were males. Outpatients accounted for 54% of the cases detected. Campylobacter were isolated from faeces in 97.3% of cases and in 2.7% from blood. C. fetus was mostly isolated from blood (88.2% of cases). We tested for antimicrobial susceptibility 4627 isolates (85.4%). Resistance to ciprofloxacin and tetracyclines was 75.5% and 54.8%, respectively; resistance to erythromycin was 4.8%; clarithromycin 2% and azithromycin 2%. 50% of C. jejuni and C. coli were resistant to ≥ 2 antibiotics. Over the study period, resistance to ciprofloxacin and tetracyclines significantly decreased (p < 0.005), while resistance to macrolides remained stable. CONCLUSION: Campylobacter resistance to fluoroquinolones and tetracyclines in Italy is decreasing but is still high, while macrolides retain good activity.


Assuntos
Antibacterianos , Infecções por Campylobacter , Campylobacter , Testes de Sensibilidade Microbiana , Humanos , Infecções por Campylobacter/epidemiologia , Infecções por Campylobacter/microbiologia , Itália/epidemiologia , Feminino , Masculino , Adulto , Antibacterianos/farmacologia , Pessoa de Meia-Idade , Adulto Jovem , Adolescente , Idoso , Campylobacter/efeitos dos fármacos , Campylobacter/isolamento & purificação , Criança , Pré-Escolar , Lactente , Fezes/microbiologia , Farmacorresistência Bacteriana , Idoso de 80 Anos ou mais , Recém-Nascido , Campylobacter jejuni/efeitos dos fármacos , Campylobacter jejuni/isolamento & purificação
3.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674478

RESUMO

The Src homology 2 domain-containing inositol 5-phosphatase 1 (SHIP1) is known to dephosphorylate PtdIns(3,4,5)P3 into PtdIns(3,4)P2 and to interact with several signaling proteins though its docking functions. It has been shown to negatively regulate platelet adhesion and spreading on a fibrinogen surface and to positively regulate thrombus growth. In the present study, we have investigated its role during the early phase of platelet activation. Using confocal-based morphometric analysis, we found that SHIP1 is involved in the regulation of cytoskeletal organization and internal contractile activity in thrombin-activated platelets. The absence of SHIP1 has no significant impact on thrombin-induced Akt or Erk1/2 activation, but it selectively affects the RhoA/Rho-kinase pathway and myosin IIA relocalization to the cytoskeleton. SHIP1 interacts with the spectrin-based membrane skeleton, and its absence induces a loss of sustained association of integrins to this network together with a decrease in αIIbß3 integrin clustering following thrombin stimulation. This αIIbß3 integrin dynamics requires the contractile cytoskeleton under the control of SHIP1. RhoA activation, internal platelet contraction, and membrane skeleton integrin association were insensitive to the inhibition of PtdIns(3,4,5)P3 synthesis or SHIP1 phosphatase activity, indicating a role for the docking properties of SHIP1 in these processes. Altogether, our data reveal a lipid-independent function for SHIP1 in the regulation of the contractile cytoskeleton and integrin dynamics in platelets.


Assuntos
Integrina alfa2 , Integrina beta3 , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases , Ativação Plaquetária , Plaquetas/metabolismo , Integrina beta3/metabolismo , Fosfatidilinositóis/metabolismo , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Trombina/farmacologia , Trombina/metabolismo , Fosfatidilinositol-3,4,5-Trifosfato 5-Fosfatases/metabolismo , Integrina alfa2/metabolismo
4.
Eur J Clin Microbiol Infect Dis ; 41(7): 1087-1091, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35643963

RESUMO

Only two plasmid-mediated carbapenemases (KPC-2 and VIM-1) are reported in Klebsiella grimontii. Here, we report two blaKPC-3-positive isolates that were identified as K. oxytoca and E. coli by MALDI-TOF MS in the same rectal swab. Whole-genome sequencing indicated that K. oxytoca was actually K. grimontii of ST391, whereas E. coli was of ST10. In both, blaKPC-3 was carried by a pQil conjugative plasmid. The core-genome analysis identified additional blaKPC-positive K. grimontii strains from public databases, most of which were misidentified as K. oxytoca. Since K. grimontii represents an emerging reservoir of resistance traits, routine tools should improve their ability to detect this species.


Assuntos
Infecções por Escherichia coli , Infecções por Klebsiella , Klebsiella , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Escherichia coli/genética , Humanos , Klebsiella/genética , Infecções por Klebsiella/microbiologia , Klebsiella oxytoca , Testes de Sensibilidade Microbiana , Plasmídeos/genética , beta-Lactamases/genética
5.
Int J Mol Sci ; 23(10)2022 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-35628617

RESUMO

Pericytes (PCs) are mesenchymal stromal cells (MSCs) that function as support cells and play a role in tissue regeneration and, in particular, vascular homeostasis. PCs promote endothelial cells (ECs) survival which is critical for vessel stabilization, maturation, and remodeling. In this study, PCs were isolated from human micro-fragmented adipose tissue (MFAT) obtained from fat lipoaspirate and were characterized as NG2+/PDGFRß+/CD105+ cells. Here, we tested the fat-derived PCs for the dispensability of the CD146 marker with the aim of better understanding the role of these PC subpopulations on angiogenesis. Cells from both CD146-positive (CD146+) and negative (CD146-) populations were observed to interact with human umbilical vein ECs (HUVECs). In addition, fat-derived PCs were able to induce angiogenesis of ECs in spheroids assay; and conditioned medium (CM) from both PCs and fat tissue itself led to the proliferation of ECs, thereby marking their role in angiogenesis stimulation. However, we found that CD146+ cells were more responsive to PDGF-BB-stimulated migration, adhesion, and angiogenic interaction with ECs, possibly owing to their higher expression of NCAM/CD56 than the corresponding CD146- subpopulation. We conclude that in fat tissue, CD146-expressing cells may represent a more mature pericyte subpopulation that may have higher efficacy in controlling and stimulating vascular regeneration and stabilization than their CD146-negative counterpart.


Assuntos
Antígeno CD146 , Células-Tronco Mesenquimais , Pericitos , Tecido Adiposo/metabolismo , Antígeno CD146/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Células-Tronco Mesenquimais/metabolismo , Neovascularização Patológica/metabolismo , Neovascularização Fisiológica
6.
Biochim Biophys Acta ; 1853(8): 1879-88, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25960397

RESUMO

Phosphatidylinositol 3-kinaseß (PI3Kß) plays a predominant role in integrin outside-in signaling and in platelet activation by GPVI engagement. We have shown that the tyrosine kinase Pyk2 mediates PI3Kß activation downstream of integrin αIIbß3, and promotes the phosphorylation of the PI3K-associated adaptor protein c-Cbl. In this study, we compared the functional correlation between Pyk2 and PI3Kß upon recruitment of the two main platelet collagen receptors, integrin α2ß1 and GPVI. PI3Kß-mediated phosphorylation of Akt was inhibited in Pyk2-deficient platelets adherent to monomeric collagen through integrin α2ß1, but occurred normally upon GPVI ligation. Integrin α2ß1 engagement led to Pyk2-independent association of c-Cbl with PI3K. However, c-Cbl was not phosphorylated in adherent platelets, and phosphorylation of Akt occurred normally in c-Cbl-deficient platelets, indicating that the c-Cbl is dispensable for Pyk2-mediated PI3Kß activation. Stimulation of platelets with CRP, a selective GPVI ligand, induced c-Cbl phosphorylation in the absence of Pyk2, but failed to promote its association with PI3K. Pyk2 activation was completely abrogated in PI3KßKD, but not in PI3KγKD platelets, and was strongly inhibited by Src kinases and phospholipase C inhibitors, and by BAPTA-AM. The absence of PI3Kß activity also hampered GPVI-induced tyrosine-phosphorylation and activation of PLCγ2, preventing intracellular Ca2+ increase and phosphorylation of pleckstrin. Moreover, GPVI-induced intracellular Ca2+ increase and pleckstrin phosphorylation were also strongly inhibited in human platelets treated with the PI3Kß inhibitor TGX-221. These results outline important differences in the regulation of PI3Kß by GPVI and integrin α2ß1 and suggest that inhibition of Pyk2 may target PI3Kß activation in a selective context of platelet stimulation.


Assuntos
Quinase 2 de Adesão Focal/fisiologia , Integrina alfa2beta1/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Glicoproteínas da Membrana de Plaquetas/fisiologia , Proteínas Proto-Oncogênicas c-cbl/fisiologia , Animais , Células Cultivadas , Ativação Enzimática , Humanos , Camundongos , Camundongos Knockout , Transdução de Sinais
7.
Clin Immunol ; 173: 133-146, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27720845

RESUMO

Multiple Sclerosis (MS) is an inflammatory disease with neurodegenerative alterations, ultimately progressing to neurological handicap. Therapies are effective in counteracting inflammation but not neurodegeneration. Biomarkers predicting disease course or treatment response are lacking. We investigated whether altered gene and protein expression profiles were detectable in the peripheral blood of 78 relapsing remitting MS (RR-MS) patients treated by disease-modifying therapies. A discovery/validation study on RR-MS responsive to glatiramer acetate identified 8 differentially expressed genes: ITGA2B, ITGB3, CD177, IGJ, IL5RA, MMP8, P2RY12, and S100ß. A longitudinal study on glatiramer acetate, Interferon-ß, or Fingolimod treated RR-MS patients confirmed that 7 out of 8 genes were downregulated with reference to the different therapies, whereas S100ß was always upregulated. Thus, we identified a peripheral gene signature associated with positive response in RR-MS which may also explain drug immunomodulatory effects. The usefulness of this signature as a biomarker needs confirmation on larger series of patients.


Assuntos
Fatores Imunológicos/uso terapêutico , Esclerose Múltipla Recidivante-Remitente/tratamento farmacológico , Esclerose Múltipla Recidivante-Remitente/genética , Transcriptoma/efeitos dos fármacos , Adulto , Feminino , Cloridrato de Fingolimode/uso terapêutico , Perfilação da Expressão Gênica , Acetato de Glatiramer/uso terapêutico , Humanos , Interferon beta/uso terapêutico , Leucócitos Mononucleares/metabolismo , Masculino , Esclerose Múltipla Recidivante-Remitente/sangue , Adulto Jovem
8.
Blood ; 121(4): 648-57, 2013 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-23175689

RESUMO

In the present study, we used a knockout murine model to analyze the contribution of the Ca(2+)-dependent focal adhesion kinase Pyk2 in platelet activation and thrombus formation in vivo. We found that Pyk2-knockout mice had a tail bleeding time that was slightly increased compared with their wild-type littermates. Moreover, in an in vivo model of femoral artery thrombosis, the time to arterial occlusion was significantly prolonged in mice lacking Pyk2. Pyk2-deficient mice were also significantly protected from collagen plus epinephrine-induced pulmonary thromboembolism. Ex vivo aggregation of Pyk2-deficient platelets was normal on stimulation of glycoprotein VI, but was significantly reduced in response to PAR4-activating peptide, low doses of thrombin, or U46619. Defective platelet aggregation was accompanied by impaired inside-out activation of integrin α(IIb)ß(3) and fibrinogen binding. Granule secretion was only slightly reduced in the absence of Pyk2, whereas a marked inhibition of thrombin-induced thromboxane A(2) production was observed, which was found to be responsible for the defective aggregation. Moreover, we have demonstrated that Pyk2 is implicated in the signaling pathway for cPLA(2) phosphorylation through p38 MAPK. The results of the present study show the importance of the focal adhesion kinase Pyk2 downstream of G-protein-coupled receptors in supporting platelet aggregation and thrombus formation.


Assuntos
Quinase 2 de Adesão Focal/genética , Ativação Plaquetária/genética , Trombina/metabolismo , Trombose/genética , Trombose/metabolismo , Animais , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Cálcio/metabolismo , Fosfolipases A2 do Grupo II/metabolismo , Camundongos , Camundongos Knockout , Fosforilação , Ativação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/efeitos dos fármacos , Agregação Plaquetária/genética , Transdução de Sinais , Trombina/farmacologia , Tromboxano A2/biossíntese , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
9.
Blood ; 119(3): 847-56, 2012 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-22106345

RESUMO

Integrin α2ß1-mediated adhesion of human platelets to monomeric type I collagen or to the GFOGER peptide caused a time-dependent activation of PI3K and Akt phosphorylation. This process was abrogated by pharmacologic inhibition of PI3Kß, but not of PI3Kγ or PI3Kα. Moreover, Akt phosphorylation was undetectable in murine platelets expressing a kinase-dead mutant of PI3Kß (PI3Kß(KD)), but occurred normally in PI3Kγ(KD) platelets. Integrin α2ß1 failed to stimulate PI3Kß in platelets from phospholipase Cγ2 (PLCγ2)-knockout mice, and we found that intracellular Ca(2+) linked PLCγ2 to PI3Kß activation. Integrin α2ß1 also caused a time-dependent stimulation of the focal kinase Pyk2 downstream of PLCγ2 and intracellular Ca(2+). Whereas activation of Pyk2 occurred normally in PI3Kß(KD) platelets, stimulation of PI3Kß was strongly reduced in Pyk2-knockout mice. Neither Pyk2 nor PI3Kß was required for α2ß1-mediated adhesion and spreading. However, activation of Rap1b and inside-out stimulation of integrin αIIbß3 were reduced after inhibition of PI3Kß and were significantly impaired in Pyk2-deficient platelets. Finally, both PI3Kß and Pyk2 significantly contributed to thrombus formation under flow. These results demonstrate that Pyk2 regulates PI3Kß downstream of integrin α2ß1, and document a novel role for Pyk2 and PI3Kß in integrin α2ß1 promoted inside-out activation of integrin αIIbß3 and thrombus formation.


Assuntos
Plaquetas/metabolismo , Quinase 2 de Adesão Focal/fisiologia , Integrina alfa2beta1/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Adesividade Plaquetária , Proteínas Proto-Oncogênicas c-akt/metabolismo , Animais , Cálcio/metabolismo , Colágeno/metabolismo , Fibrinogênio/metabolismo , Humanos , Immunoblotting , Camundongos , Camundongos Knockout , Fosforilação , Agregação Plaquetária , Complexo Glicoproteico GPIIb-IIIa de Plaquetas/metabolismo , Transdução de Sinais
10.
Biochem J ; 453(1): 115-23, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23600630

RESUMO

In blood platelets the small GTPase Rap1b is activated by cytosolic Ca2+ and promotes integrin αIIbß3 inside-out activation and platelet aggregation. cAMP is the major inhibitor of platelet function and antagonizes Rap1b stimulation through a mechanism that remains unclear. In the present study we demonstrate that the Ca2+-dependent exchange factor for Rap1b, CalDAG-GEFI (calcium and diacylglycerol-regulated guanine-nucleotide-exchange factor I), is a novel substrate for the cAMP-activated PKA (protein kinase A). CalDAG-GEFI phosphorylation occurred in intact platelets treated with the cAMP-increasing agent forskolin and was inhibited by the PKA inhibitor H89. Purified recombinant CalDAG-GEFI was also phosphorylated in vitro by the PKA catalytic subunit. By screening a panel of specific serine to alanine residue mutants, we identified Ser116 and Ser586 as PKA phosphorylation sites in CalDAG-GEFI. In transfected HEK (human embryonic kidney)-293 cells, as well as in platelets, forskolin-induced phosphorylation of CalDAG-GEFI prevented the activation of Rap1b induced by the Ca2+ ionophore A23187. In platelets this effect was associated with the inhibition of aggregation. Moreover, cAMP-mediated inhibition of Rap1b was lost in HEK-293 cells transfected with a double mutant of CalDAG-GEFI unable to be phosphorylated by PKA. The results of the present study demonstrate that phosphorylation of CalDAG-GEFI by PKA affects its activity and represents a novel mechanism for cAMP-mediated inhibition of Rap1b in platelets.


Assuntos
Cálcio/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas rap de Ligação ao GTP/metabolismo , Animais , Plaquetas/efeitos dos fármacos , Calcimicina/farmacologia , Colforsina/farmacologia , Proteínas de Ligação a DNA/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Isoquinolinas/farmacologia , Fosforilação , Ativação Plaquetária/efeitos dos fármacos , Ratos , Sulfonamidas/farmacologia , Proteínas rap de Ligação ao GTP/antagonistas & inibidores
11.
Antibiotics (Basel) ; 13(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38927183

RESUMO

Bloodstream infections (BSI) caused by multidrug-resistant (MDR) bacteria, pose a major threat for patients, especially for those who are immunosuppressed. Rapid pathogen detection and characterization from positive blood cultures are crucial in the management of patients with BSI to enable an adequate and timely antimicrobial therapy. This study aimed to investigate the potential role of the Molecular Mouse system, a new CE IVD molecular test designed to rapidly detect the causative agents of bacteremia and their resistance determinants, in the management of the therapy in critically ill patients. Agreement between the results of the Molecular Mouse and the conventional routine method was also considered. Overall, 100 positive blood cultures were collected from septic critically ill patients from May 2023 to January 2024 and analyzed with Molecular Mouse and routine protocols. The new instrument consistently agreed with the routine protocols in the case of monomicrobial blood cultures, while some discrepancies were obtained in the polymicrobial samples. Antimicrobial resistance genes were detected in 35 samples, with vanA and CTX-M-1/9 groups being the most frequently detected targets. Therapy was adjusted in 42 critically ill patients confirming the importance of new rapid molecular tests in the management of positive blood cultures, to adjust empirical therapy and use new antibiotics accurately.

12.
J Neuroinflammation ; 10: 130, 2013 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-24160637

RESUMO

BACKGROUND: Astrocytes respond to local insults within the brain and the spinal cord with important changes in their phenotype. This process, overall known as "activation", is observed upon proinflammatory stimulation and leads astrocytes to acquire either a detrimental phenotype, thereby contributing to the neurodegenerative process, or a protective phenotype, thus supporting neuronal survival. Within the mechanisms responsible for inflammatory neurodegeneration, oxidative stress plays a major role and has recently been recognized to be heavily influenced by changes in cytosolic iron levels. In this work, we investigated how activation affects the competence of astrocytes to handle iron overload and the ensuing oxidative stress. METHODS: Cultures of pure cortical astrocytes were preincubated with proinflammatory cytokines (interleukin-1ß and tumor necrosis factor α) or conditioned medium from lipopolysaccharide-activated microglia to promote activation and then exposed to a protocol of iron overload. RESULTS: We demonstrate that activated astrocytes display an efficient protection against iron-mediated oxidative stress and cell death. Based on this evidence, we performed a comprehensive biochemical and molecular analysis, including a transcriptomic approach, to identify the molecular basis of this resistance. CONCLUSIONS: We propose the protective phenotype acquired after activation not to involve the most common astrocytic antioxidant pathway, based on the Nrf2 transcription factor, but to result from a complex change in the expression and activity of several genes involved in the control of cellular redox state.


Assuntos
Astrócitos/citologia , Astrócitos/metabolismo , Estresse Oxidativo/fisiologia , Animais , Western Blotting , Ferro/metabolismo , Fenótipo , RNA Interferente Pequeno , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transfecção
13.
Antibiotics (Basel) ; 12(8)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37627667

RESUMO

Rapid pathogen detection and characterization from positive blood cultures are crucial in the management of patients with bloodstream infections (BSI) and in achieving their improved outcomes. In this context, the FilmArray Blood Culture Identification (BCID2) panel is an FDA approved molecular test, which can quickly identify different species and resistance determinants, thus making an impact in antimicrobial practice. In this study, we analyzed 136 positive blood cultures collected from septic critically ill patients from April 2021 to March 2023 by using the FilmArray BCID2 panel, and results obtained by fast molecular analysis were compared to those obtained by routine protocols. Overall, the BCID2 panel showed a strong concordance with conventional methods, particularly in the case of monomicrobial samples, whereas some discrepancies were found in 10/32 polymicrobial samples. Of note, this technique allowed us to identify a significant number of yeasts (37/94 samples) and to unravel the presence of several resistance markers, including both Gram-positive and Gram-negative organisms. These findings strongly support the potential use of the BCID2 panel as an adjunct to the conventional microbiology methods for the management of critically ill septic patients, thus accelerating blood pathogen and resistance genes identification, focusing antibiotic therapy, and avoiding inappropriate and excessive use of drugs.

14.
Mol Cell Neurosci ; 48(2): 151-60, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21803157

RESUMO

Calcitonin gene related peptide (CGRP) and adrenomedullin are potent biologically active peptides that have been proposed to play an important role in vascular and inflammatory diseases. Their function in the central nervous system is still unclear since they have been proposed as either pro-inflammatory or neuroprotective factors. We investigated the effects of the two peptides on astrocytes and microglia, cells of the central nervous system that exert a strong modulatory activity in the neuroinflammatory processes. In particular, we studied the ability of CGRP and adrenomedullin to modulate microglia activation, i.e. its competence of producing and releasing pro-inflammatory cytokines/chemokines that are known to play a crucial role in neuroinflammation. In this work we show that the two neuropeptides exert a potent inhibitory effect on lipopolysaccharide-induced microglia activation in vitro, with strong inhibition of the release of pro-inflammatory mediators (such as NO, cytokines and chemokines). Both CGRP and adrenomedullin are known to promote cAMP elevation, this second messenger cannot fully account for the observed inhibitory effects, thereby suggesting that other signaling pathways are involved. Interestingly, the inhibitory effect of CGRP and adrenomedullin appears to be stimulus specific, since direct activation with pro-inflammatory cytokines was not affected. Our findings clarify aspects of microglia activation, and contribute to the comprehension of the switch from reparative to detrimental function that occurs when glia is exposed to different conditions. Moreover, they draw the attention to potential targets for novel pharmacological intervention in pathologies characterized by glia activation and neuroinflammation.


Assuntos
Adrenomedulina/farmacologia , Peptídeo Relacionado com Gene de Calcitonina/farmacologia , Lipopolissacarídeos/farmacologia , Microglia/efeitos dos fármacos , Microglia/metabolismo , Animais , Astrócitos/citologia , Astrócitos/efeitos dos fármacos , Astrócitos/metabolismo , Células Cultivadas , Quimiocinas/metabolismo , Técnicas de Cocultura , AMP Cíclico/metabolismo , Interleucina-6/metabolismo , Microglia/citologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo II/metabolismo , Fragmentos de Peptídeos/farmacologia , Ratos , Fator de Necrose Tumoral alfa/metabolismo
15.
Nanomedicine ; 8(8): 1329-36, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22542822

RESUMO

Nanomaterials are attracting growing interest for their potential use in several applications as nanomedicine; therefore, the analysis of their potential toxic effects on various cellular models, including circulating blood cells, is mandatory. This study aimed to investigate the effect of three unrelated nanomaterials, namely nanoscale silica, multiwalled carbon nanotubes, and carbon black, on platelet activation and aggregation. We found that these nanomaterials stimulate some of the typical biochemical pathways involved in canonical platelet activation, such as the stimulation of phospholipase C and Rap1b, resulting in the integrin α(IIb)ß3-mediated platelet aggregation, through a mechanism largely dependent on the release of the extracellular second messengers ADP and thromboxane A2. Importantly, we found that doses of nanoparticles unable to trigger appreciable responses can synergize with subthreshold amounts of physiological agonists to mediate platelet aggregation, indicating that even small amounts of nanomaterials in the bloodstream might contribute to the development of thrombosis. FROM THE CLINICAL EDITOR: In this study, nanosized particles of three virtually unrelated materials (silica, multi-walled carbon nanotubes and carbon black) were investigated regarding their effects on platelet activation and aggregation. All were found to stimulate some of the typical biochemical pathways involved in canonical platelet activation, and were found to have synergistic effects with physiologic platelet activator agonists.


Assuntos
Nanopartículas , Nanotubos de Carbono , Ativação Plaquetária/efeitos dos fármacos , Fuligem , Proteínas Sanguíneas/metabolismo , Humanos , Técnicas In Vitro , Integrina alfa2/sangue , Nanopartículas/toxicidade , Nanotubos de Carbono/efeitos adversos , Fosfoproteínas/metabolismo , Agregação Plaquetária/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Dióxido de Silício/farmacologia , Fuligem/efeitos adversos , Fuligem/farmacologia , Fosfolipases Tipo C/sangue , Proteínas rap de Ligação ao GTP/sangue
16.
Brain Sci ; 12(11)2022 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-36421902

RESUMO

Parkinson's disease (PD) is a neurodegenerative disorder often associated with pre-motor symptoms involving both gastrointestinal and olfactory tissues. PD patients frequently suffer from hyposmia, hyposalivation, dysphagia and gastrointestinal dysfunctions. During the last few years it has been speculated that microbial agents could play a crucial role in PD. In particular, alterations of the microbiota composition (dysbiosis) might contribute to the formation of misfolded α-synuclein, which is believed to be the leading cause of PD. However, while several findings confirmed that there might be an important link between intestinal microbiota alterations and PD onset, little is known about the potential contribution of the nasal microbiota. Here, we describe the latest findings on this topic by considering that more than 80% of patients with PD develop remarkable olfactory deficits in their prodromal disease stage. Therefore, the nasal microbiota might contribute to PD, eventually boosting the gut microbiota in promoting disease onset. Finally, we present the applications of the seed amplification assays to the study of the gut and olfactory mucosa of PD patients, and how they could be exploited to investigate whether pathogenic bacteria present in the gut and the nose might promote α-synuclein misfolding and aggregation.

17.
Mult Scler Relat Disord ; 58: 103415, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35216790

RESUMO

BACKGROUND: Patients with neuroimmunological conditions such as multiple sclerosis (MS) often receive disease-modifying therapies (DMTs) or immunosuppressants which may reduce the response to vaccines. BNT162b2 (Pfizer-BioNTech) is the first COVID-19 vaccine authorized in Italy. Its clinical efficacy and serological response were not evaluated in MS patients receiving DMTs or immunosuppressants. This early multicenter study evaluated serological response to BNT162b2 and safety in these patients. METHODS: From February 2021 we enrolled consecutive MS patients, treated with at least one DMT and all healthcare workers (HCWs), having received or being scheduled to receive the first dose of BNT162b2. Blood samples were collected after the second vaccine dose and analyzed to quantitatively detect the presence of anti-Spike antibodies. Serological response was compared to the one from a control population of HCWs, with neither neuroimmunological conditions nor receiving immunosuppressants. Patients receiving treatments associated with a possible reduced response (Under-scrutiny treatment group) were also compared to those undergoing other treatments. Anti-Spike levels were described as median and interquartile range (IQR). Comparisons were performed with Wilcoxon-Mann-Whitney test. Solicited and unsolicited adverse events (AEs) were collected. RESULTS: 39 MS patients and a control population of 273 HCWs were included. One patient, under treatment with ocrelizumab, did not respond to BNT162b2, while all the remaining patients and all controls developed a serological response to the vaccine. Median anti-Spike levels were similar between patients (1471.0 BAU/ml; IQR 779.7 to 2357.0) and controls (1479.0 BAU/ml; IQR 813.1 to 2528.0) (p = 0.53). Patients included in the Under-scrutiny treatments group showed reduced anti-Spike levels (156.4 BAU/ml; IQR 33.4 to 559.1) compared to those receiving other treatments (1582.4 BAU/ml; IQR 1296.5 to 2219.0) (p = 0.001). Solicited AEs were all mild to moderate in severity, generally reported in the first days after vaccination, and resolved in the following days. Two MS patients reported a clinical relapse after the second vaccine dose. CONCLUSION: BNT162b2 induced a serological response in MS patients treated with DMTs similar to controls not receiving DMTs or immunosuppressants. Some treatments were associated with reduced levels of anti-Spike antibodies in patients. These observations have relevant implications for treated patients receiving BNT162b2 and the community.


Assuntos
COVID-19 , Esclerose Múltipla , Anticorpos Antivirais , Vacina BNT162 , COVID-19/prevenção & controle , Vacinas contra COVID-19/efeitos adversos , Estudos de Casos e Controles , Humanos , Imunoglobulina G , Esclerose Múltipla/tratamento farmacológico , SARS-CoV-2
18.
Eur J Neurosci ; 33(2): 236-43, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21073551

RESUMO

BACE1 and BACE2 are two closely related membrane-bound aspartic proteases. BACE1 is widely recognized as the neuronal ß-secretase that cleaves the amyloid-ß precursor protein, thus allowing the production of amyloid-ß, i.e. the peptide that has been proposed to trigger the neurodegenerative process in Alzheimer's disease. BACE2 has ubiquitous expression and its physiological and pathological role is still unclear. In light of a possible role of glial cells in the accumulation of amyloid-ß in brain, we have investigated the expression of these two enzymes in primary cultures of astrocytes. We show that astrocytes possess ß-secretase activity and produce amyloid-ß because of the activity of BACE2, but not BACE1, the expression of which is blocked at the translational level. Finally, our data demonstrate that changes in the astrocytic phenotype during neuroinflammation can produce both a negative as well as a positive modulation of ß-secretase activity, also depending on the differential responsivity of the brain regions.


Assuntos
Secretases da Proteína Precursora do Amiloide/metabolismo , Ácido Aspártico Endopeptidases/metabolismo , Astrócitos/enzimologia , Regulação da Expressão Gênica , Biossíntese de Proteínas , Secretases da Proteína Precursora do Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/genética , Astrócitos/citologia , Células Cultivadas , Hipocampo/citologia , Humanos , Neurônios/citologia , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley
19.
Cells ; 11(1)2021 12 28.
Artigo em Inglês | MEDLINE | ID: mdl-35011649

RESUMO

Parkinson's disease (PD) and multiple system atrophy (MSA) are caused by two distinct strains of disease-associated α-synuclein (αSynD). Recently, we have shown that olfactory mucosa (OM) samples of patients with PD and MSA can seed the aggregation of recombinant α-synuclein by means of Real-Time Quaking-Induced Conversion (αSyn_RT-QuIC). Remarkably, the biochemical and morphological properties of the final α-synuclein aggregates significantly differed between PD and MSA seeded samples. Here, these aggregates were given to neuron-like differentiated SH-SY5Y cells and distinct inflammatory responses were observed. To deepen whether the morphological features of α-synuclein aggregates were responsible for this variable SH-SY5Y inflammatory response, we generated three biochemically and morphologically distinct α-synuclein aggregates starting from recombinant α-synuclein that were used to seed αSyn_RT-QuIC reaction; the final reaction products were used to stimulate SH-SY5Y cells. Our study showed that, in contrast to OM samples of PD and MSA patients, the artificial aggregates did not transfer their distinctive features to the αSyn_RT-QuIC products and the latter induced analogous inflammatory responses in cells. Thus, the natural composition of the αSynD strains but also other specific factors in OM tissue can substantially modulate the biochemical, morphological and inflammatory features of the αSyn_RT-QuIC products.


Assuntos
Inflamação/patologia , Atrofia de Múltiplos Sistemas/metabolismo , Atrofia de Múltiplos Sistemas/patologia , Mucosa Olfatória/metabolismo , Mucosa Olfatória/patologia , Doença de Parkinson/metabolismo , Doença de Parkinson/patologia , alfa-Sinucleína/metabolismo , Diferenciação Celular , Linhagem Celular Tumoral , Humanos , Neuroblastoma/patologia , Agregados Proteicos , Proteínas Recombinantes/metabolismo , alfa-Sinucleína/ultraestrutura
20.
Prog Mol Biol Transl Sci ; 175: 325-358, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32958239

RESUMO

Neurodegenerative diseases (NDs) such as Alzheimer's disease (AD), Parkinson's disease (PD), atypical parkinsonisms, frontotemporal dementia (FTLD) and prion diseases are characterized by the accumulation of misfolded proteins in the central nervous system (CNS). Although the cause for the initiation of protein aggregation is not well understood, these aggregates are disease-specific. For instance, AD is characterized by the intraneuronal accumulation of tau and extracellular deposition of amyloid-ß (Aß), PD is marked by the intraneuronal accumulation of α-synuclein, many FTLD are associated with the accumulation of TDP-43 while prion diseases show aggregates of misfolded prion protein. Hence, misfolded proteins are considered disease-specific biomarkers and their identification and localization in the CNS, collected postmortem, is required for a definitive diagnosis. With the development of two innovative cell-free amplification techniques named Protein Misfolding Cyclic Amplification (PMCA) and Real-Time Quaking-Induced Conversion (RT-QuIC), traces of disease-specific biomarkers were found in CSF and other peripheral tissues (e.g., urine, blood, and olfactory mucosa) of patients with different NDs. These techniques exploit an important feature shared by many misfolded proteins, that is their ability to interact with their normally folded counterparts and force them to undergo similar structural rearrangements. Essentially, RT-QuIC and PMCA mimic in vitro the same pathological processes of protein misfolding which occur in vivo in a very rapid manner. For this reason, they have been employed for studying different aspects of protein misfolding but, overall, they seem to be very promising for the premortem diagnosis of NDs.


Assuntos
Príons/metabolismo , Animais , Sistema Livre de Células , Humanos , Proteínas PrPSc/química , Proteínas PrPSc/metabolismo , Doenças Priônicas/diagnóstico , Doenças Priônicas/metabolismo , Doenças Priônicas/patologia , Príons/química , Dobramento de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA