Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Int J Mol Sci ; 24(23)2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38069187

RESUMO

Glaucoma represents a group of neurodegenerative diseases characterized by optic nerve damage and the slowly progressive death of retinal ganglion cells. Glaucoma is considered the second leading cause of irreversible blindness worldwide. Pharmaceutical treatment of glaucoma is critical because of the properties of the ocular barrier that limit the penetration of drugs, resulting in lower systemic bioavailability. This behavior causes the need of frequent drug administration, which leads to deposition of concentrated solutions on the eye, causing toxic effects and cellular damage to the eye. To overcome these drawbacks, novel drug-delivery systems, such as liposomes, can play an important role in improving the therapeutic efficacy of antiglaucomatous drugs. In this work, liposomes were synthesized to improve various aspects, such as ocular barrier penetration, bioavailability, sustained release of the drug, targeting of the tissue, and reduction in intraocular pressure. Citicoline (CDP-choline; cytidine 5'-diphosphocholine) is an important intermediate in the biosynthesis of cell membrane phospholipids, with neuroprotective and neuroenhancement properties, and it was used in the treatment on retinal function and neural conduction in the visual pathways of glaucoma patients. In this study, citicoline was loaded into the 1,2-dioleoyl-sn-glycerol-3-phosphocholine and cholesterol liposomal carrier to enhance its therapeutic effect. The citicoline encapsulation efficiency, drug release, and size analysis of the different liposome systems were investigated using dynamic light scattering, nuclear magnetic resonance, infrared spectroscopy, and ToF-SIMS experiments.


Assuntos
Glaucoma , Lipossomos , Humanos , Lipossomos/uso terapêutico , Citidina Difosfato Colina/uso terapêutico , Sistemas de Liberação de Medicamentos , Glaucoma/tratamento farmacológico , Glaucoma/metabolismo , Retina/metabolismo
2.
Molecules ; 28(15)2023 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-37570717

RESUMO

Principles of quality by design and design of experiments are acquiring more importance in the discovery and application of new drug carriers, such as solid lipid nanoparticles. In this work, an optimized synthesis of solid lipid nanoparticles loaded with Triamcinolone Acetonide is presented using an approach that involves Stearic Acid as a lipid, soy PC as an ionic surfactant, and Tween 80 as a nonionic surfactant. The constructed circumscribed Central Composite Design considers the lipid and nonionic surfactant quantities and the sonication amplitude in order to optimize particle size and Zeta potential, both measured by means of Dynamic Light Scattering, while the separation of unentrapped drug from the optimized Triamcinolone Acetonide-loaded solid lipid nanoparticles formulation is performed by Size Exclusion Chromatography and, subsequently, the encapsulation efficiency is determined by HPLC-DAD. The proposed optimized formulation-with the goal of maximizing Zeta potential and minimizing particle size-has shown good accordance with predicted values of Zeta potential and dimensions, as well as a high value of encapsulated Triamcinolone Acetonide. Experimental values obtained from the optimized synthesis reports a dimension of 683 ± 5 nm, which differs by 3% from the predicted value, and a Zeta potential of -38.0 ± 7.6 mV (12% difference from the predicted value).


Assuntos
Nanopartículas , Triancinolona Acetonida , Triancinolona Acetonida/química , Nanopartículas/química , Portadores de Fármacos/química , Tamanho da Partícula , Tensoativos/química
3.
Int J Mol Sci ; 23(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35806429

RESUMO

Reactive oxygen species (ROS) represent a group of molecules with a signaling role that are involved in regulating human cell proliferation and differentiation. Increased ROS concentrations are often associated with the local nonspecific oxidation of biological macromolecules, especially proteins and lipids. Free radicals, in general, may randomly damage protein molecules through the formation of protein-centered radicals as intermediates that, in turn, decay into several end oxidation products. Malondialdehyde (MDA), a marker of free-radical-mediated lipid oxidation and cell membrane damage, forms adducts with proteins in a nonspecific manner, leading to the loss of their function. In our study, we utilized U-937 cells as a model system to unveil the effect of four selected bioactive compounds (chlorogenic acid, oleuropein, tomatine, and tyrosol) to reduce oxidative stress associated with adduct formation in differentiating cells. The purity of the compounds under study was confirmed by an HPLC analysis. The cellular integrity and changes in the morphology of differentiated U-937 cells were confirmed with confocal microscopy, and no significant toxicity was found in the presence of bioactive compounds. From the Western blot analysis, a reduction in the MDA adduct formation was observed in cells treated with compounds that underlaid the beneficial effects of the compounds tested.


Assuntos
Estresse Oxidativo , Radicais Livres/metabolismo , Humanos , Malondialdeído , Oxirredução , Espécies Reativas de Oxigênio/farmacologia
4.
Molecules ; 26(9)2021 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-34064488

RESUMO

Quercetin is a poorly water-soluble flavonoid with many benefits to human health. Besides the natural food resources that may provide Quercetin, the interest in delivery systems that could enhance its bioavailability in the human body has seen growth in recent years. Promising delivery system candidates are represented by Solid Lipid Nanoparticles (SLNs) which are composed of well-tolerated compounds and provide a relatively high encapsulation efficiency and suitable controlled release. In this study, Quercetin-loaded and negatively charged Solid Lipid Nanoparticles were synthesized based on a coacervation method, using stearic acid as a core lipid and Arabic Gum as a stabilizer. Samples were qualitatively characterized by Dynamic light scattering (DLS), Zeta Potential, Surface infrared spectroscopy (FTIR-ATR), and Time of flight secondary ion mass spectrometry (ToF-SIMS). Encapsulation efficiency, drug release, and antioxidant effect against ABTS•+ were evaluated in vitro by UV-VIS spectrophotometry.


Assuntos
Portadores de Fármacos/química , Lipídeos/química , Nanopartículas/química , Quercetina/farmacologia , Antioxidantes/farmacologia , Preparações de Ação Retardada , Difusão Dinâmica da Luz , Tamanho da Partícula , Espectrometria de Massa de Íon Secundário , Espectroscopia de Infravermelho com Transformada de Fourier , Eletricidade Estática , Fatores de Tempo
5.
Molecules ; 26(11)2021 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-34063803

RESUMO

The intake of tomato glycoalkaloids can exert beneficial effects on human health. For this reason, methods for a rapid quantification of these compounds are required. Most of the methods for α-tomatine and dehydrotomatine quantification are based on chromatographic techniques. However, these techniques require complex and time-consuming sample pre-treatments. In this work, HPLC-ESI-QqQ-MS/MS was used as reference method. Subsequently, multiple linear regression (MLR) and partial least squares regression (PLSR) were employed to create two calibration models for the prediction of the tomatine content from thermogravimetric (TGA) and attenuated total reflectance (ATR) infrared spectroscopy (IR) analyses. These two fast techniques were proven to be suitable and effective in alkaloid quantification (R2 = 0.998 and 0.840, respectively), achieving low errors (0.11 and 0.27%, respectively) with the reference technique.


Assuntos
Modelos Químicos , Solanum lycopersicum/química , Tomatina/análogos & derivados , Calibragem , Cromatografia Líquida de Alta Pressão/métodos , Análise Multivariada , Espectrometria de Massas por Ionização por Electrospray/métodos , Espectrofotometria Infravermelho/métodos , Espectrometria de Massas em Tandem/métodos , Termogravimetria/métodos , Tomatina/análise
6.
Molecules ; 26(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34299402

RESUMO

Prunus persica L. is one of the most important fruit crops in European production, after grapes, apples, oranges and watermelons. Most varieties are rich in secondary metabolites, showing antioxidant properties for human health. The purpose of this study was to develop a chemical analysis methodology, which involves the use of different analytical-instrumental techniques to deepen the knowledge related to the profile of metabolites present in selected cultivars of peaches and nectarines cultivated in the Mediterranean area (Southern Italy). The comparative study was conducted by choosing yellow-fleshed peaches (RomeStar, ZeeLady) and yellow-fleshed nectarines (Nectaross, Venus) from two geographical areas (Piana di Sibari and Piana di Metaponto), and by determining the chemical parameters for the flesh and skin that allow for identification of any distinctive varietal and/or geographical characteristics. A combined analytical and chemometric approach was used, trough rheological, thermogravimetric (TGA), chromatographic (HPLC-ESI-MS), spectroscopic (UV-Vis, ATR-FTIR, NMR) and spectrometric (ToF-SIMS) analysis. This approach allowed us to identify the characterizing parameters for the analysis of a plant matrix so that the developed methodology could define an easily exportable and extendable model for the characterization of other types of vegetable matrices.


Assuntos
Antioxidantes/análise , Frutas/classificação , Frutas/metabolismo , Cromatografia Gasosa-Espectrometria de Massas/instrumentação , Modelos Estatísticos , Prunus persica/classificação , Prunus persica/metabolismo , Antioxidantes/metabolismo , Geografia
7.
Environ Monit Assess ; 193(10): 668, 2021 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-34553268

RESUMO

Microplastics and nanoplastics have a range of impacts on the aquatic environment and present major challenges to their mitigation and management. Their transport and fate depend on their composition, form, and the characteristics of the receiving environment. We explore the spatial and temporal dynamics of plastic particles in the world's second-largest hypersaline lake, combining information from microscopic, thermal gravimetric, and fractional methods. Studies on microplastic and nanoplastic pollution in these important environments are scarce, and there is limited understanding of their dynamics and fate. Our results for Urmia Lake (Iran) in 2016 and 2019 show a discrepancy in the composition and quantity of microplastics measured in river tributaries to the lake and the lake itself, suggesting an active microplastic sink. Potential sink mechanisms in hypersaline lakes are explored. The present study indicates that microplastics have different transport mechanisms and fate in these extreme environments, compared to lake and ocean environments.


Assuntos
Microplásticos , Poluentes Químicos da Água , Monitoramento Ambiental , Lagos , Plásticos , Poluentes Químicos da Água/análise
8.
J Cell Physiol ; 234(5): 6696-6708, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30341892

RESUMO

Alkaptonuria (AKU) is a disease caused by a deficient homogentisate 1,2-dioxygenase activity leading to systemic accumulation of homogentisic acid (HGA), that forms a melanin-like polymer that progressively deposits onto connective tissues causing a pigmentation called "ochronosis" and tissue degeneration. The effects of AKU and ochronotic pigment on the biomechanical properties of articular cartilage need further investigation. To this aim, AKU cartilage was studied using thermal (thermogravimetry and differential scanning calorimetry) and rheological analysis. We found that AKU cartilage had a doubled mesopore radius compared to healthy cartilage. Since the mesoporous structure is the main responsible for maintaining a correct hydrostatic pressure and tissue homoeostasis, drastic changes of thermal and rheological parameters were found in AKU. In particular, AKU tissue lost its capability to enhance chondrocytes metabolism (decreased heat capacity) and hence the production of proteoglycans. A drastic increase in stiffness and decrease in dissipative and lubricant role ensued in AKU cartilage. Multiphoton and scanning electron microscopies revealed destruction of cell-matrix microstructure and disruption of the superficial layer. Such observations on AKU specimens were confirmed in HGA-treated healthy cartilage, indicating that HGA is the toxic responsible of morphological and mechanical alterations of cartilage in AKU.


Assuntos
Alcaptonúria/tratamento farmacológico , Condrócitos/efeitos dos fármacos , Ácido Homogentísico/farmacologia , Ocronose/tratamento farmacológico , Alcaptonúria/metabolismo , Cartilagem Articular/efeitos dos fármacos , Cartilagem Articular/metabolismo , Condrócitos/metabolismo , Humanos , Oxirredução/efeitos dos fármacos , Pigmentação/efeitos dos fármacos
9.
Int J Mol Sci ; 20(6)2019 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-30884846

RESUMO

Research on microcirculatory alterations in human heart disease is essential to understand the genesis of myocardial contractile dysfunction and its evolution towards heart failure. The use of contrast agents in magnetic resonance imaging is an important tool in medical diagnostics related to this dysfunction. Contrast agents significantly improve the imaging by enhancing the nuclear magnetic relaxation rates of water protons in the tissues where they are distributed. Gadolinium complexes are widely employed in clinical practice due to their high magnetic moment and relatively long electronic relaxation time. In this study, the behavior of gadolinium ion as a contrast agent was investigated by two complementary methods, relaxometry and secondary ion mass spectrometry. The study examined the distribution of blood flow within the microvascular network in ex vivo Langendorff isolated rat heart models, perfused with Omniscan® contrast agent. The combined use of secondary ion mass spectrometry and relaxometry allowed for both a qualitative mapping of agent distribution as well as the quantification of gadolinium ion concentration and persistence. This combination of a chemical mapping and temporal analysis of the molar concentration of gadolinium ion in heart tissue allows for new insights on the biomolecular mechanisms underlying the microcirculatory alterations in heart disease.


Assuntos
Gadolínio/administração & dosagem , Insuficiência Cardíaca/diagnóstico por imagem , Coração/diagnóstico por imagem , Imageamento por Ressonância Magnética , Animais , Meios de Contraste/administração & dosagem , Coração/efeitos dos fármacos , Insuficiência Cardíaca/patologia , Humanos , Microcirculação/efeitos dos fármacos , Contração Miocárdica/efeitos dos fármacos , Contração Miocárdica/fisiologia , Ratos , Espectrometria de Massa de Íon Secundário , Água/química
10.
Molecules ; 24(6)2019 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-30884870

RESUMO

In this study, we developed and validated a new proposed parameter quantifying the interaction strength between natural and/or synthetic molecules with paramagnetic metal ions. The Metal ion Recognition Index, Miri, is a quantitative parameter to describe the proton environment and to define their involvement in the inner and/or outer sphere of the paramagnetic metal ion. The method is based on the analysis of NMR proton spin-lattice relaxation rates of a specific ligand in both the diamagnetic and paramagnetic conditions. The proposed procedure is also useful to calculate the ligand proton spin-lattice relaxation rate in the paramagnetic bound conditions, which is typically very difficult to determine experimentally. Miri was used to compare the ligand proton involvement toward different paramagnetic species, in particular the Copper(II)-Piroxicam system. Copper(II)-Piroxicam complex is one of the most active anti-inflammatory and anti-arthritic species. Miri provides an opportunity to improve our knowledge of metal-ligand complexes that play a fundamental role in bioinorganic interactions.


Assuntos
Complexos de Coordenação/química , Íons/química , Metais/química , Piroxicam/química , Cobre/química , Espectroscopia de Ressonância de Spin Eletrônica , Ligantes , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Manganês/química , Prótons
11.
Molecules ; 23(11)2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-30441832

RESUMO

Samples of sweet and dessert wines, Vin Santo (VSR) from Malvasia grapes, and Granello (GR) from Sauvignon grapes were collected and analyzed for the content of selected macro- and micro-nutrients (Na, K, Mg, Ca, Mn, Fe, Cu and Zn) and of Pb. GR wines had low levels for Fe, Cu and Zn, when compared to VSR and in particular Zn was two orders of magnitude lower. Methods to decrease the content of Zn and Cu in VSR, as well as those for reducing, at the same time, the concentrations of Ca, Mg and K in both VSR and GR, to avoid the formation of opalescence and depots of metal tartrates, were studied. Synthetic hydrogels containing l-histidine residue were tested. The overall relative lowering effects were by ca 4, 23, and 12% for K, Mg and Ca contents, and ca 6, 27 and 10%, for Mn, Cu and Zn contents, in GR wine samples. Commercial ion exchange resin Lanxess Lewatit L-207 and L-208 were then assayed, being legally allowed in the agro-food industry. The L-207 resin revealed great lowering effects on the concentrations of Mn, Cu and Zn, being 75, 91 and 97%, respectively, in VSR wines and 77, 76 and 92%, respectively, in GR wines. The content of Zn was reduced from 49.3 ± 1.2 mg/L in the original wine, down to 1.1 ± 0.1 mg/L, within 48 h soaking. The effects on the character of the dessert wines by the resin L-207 was also taken under control, measuring pH and color index. The color index changed by ca 15% and pH by ca 6% upon treatment of VSR wine with L-207 resins (48 h).


Assuntos
Hidrogéis/química , Resinas de Troca Iônica/química , Íons/química , Metais/química , Vinho/análise , Adsorção , Hidrogéis/síntese química , Concentração de Íons de Hidrogênio , Pigmentação
12.
Foods ; 11(11)2022 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-35681346

RESUMO

Consumption of cereals (and particularly ancient cereals) is considered the base of a healthy diet, and all current dietary guidelines have cereals at the bottom of the nutrition pyramid. Together with cereals, legumes are an excellent source of nutrients and nutraceuticals. The effects of agroindustrial pretreatments (flaking and precooking processes) on the antioxidant potential of flours from ancient cereals and legumes were studied. The extraction of free hydrophilic phenolic compounds was carried out in a hydroalcoholic solvent mixture via an ultrasound-assisted process. Furthermore, the solid residue was successively hydrolyzed by an alkaline solution to extract the bound phenolic fraction. Both free and bound extracted fractions were then quantitatively characterized for total polyphenolic and flavonoid contents, and the antioxidant potential was determined by carrying out the ABTS and DPPH radical scavenging assays, expressing the results (in both cases) as the Trolox equivalent antioxidant capacity (TEAC/ABTS and TEAC/DPPH, respectively). The samples were also extracted in organic apolar solvents (acetone or water-saturated iso-butanol) to quantitatively characterize lipophilic antioxidant compounds and pigments. A discussion on the comparison of these analytical parameters of flours obtained from raw, flaked, and precooked cereals and legumes is reported revealing that (i) phenolic compounds are mainly present in the post-hydrolysis extract (bound fraction), (ii) the precooking process significantly reduced the concentration of antioxidants, (iii) the flaking process slightly increased the phenolic content, (iv) legumes were less influenced by pretreatments, suggesting the possibility of using legumes to enrich cereal foods.

13.
Foods ; 11(16)2022 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-36010495

RESUMO

Coffea arabica L. leaves represent a viable alternative to the canonical matrices used for preparation of beverages, such as tea leaves and grounded coffee beans. Coffee leaves infusions are rich in antioxidant phenolic compounds and have a lower concentration of caffeine. Due to increasing interest in this field, a complete study of the bioactive compounds as chlorogenic acids, xanthones and alkaloids is noteworthy. C. arabica leaves were subjected to ultrasound-assisted extraction, and the extracts were studied via nuclear magnetic resonance spectroscopy (NMR) and chromatographic techniques coupled with mass spectrometry (HPLC-MSn) to identify and quantify the secondary metabolites profile through an untargeted data dependent approach. A quantitative analysis was performed for the major components-chlorogenic acids, mangiferin, caffeine and trigonelline-via HPLC-MS in Single Ion Monitoring (SIM) mode. In total, 39 compounds were identified. The presence of these bioactive compounds proved the strong potential of C. arabica leaves as functional food and as an alternative to classic infused beverages.

14.
Artigo em Inglês | MEDLINE | ID: mdl-34254897

RESUMO

Water content quantification of raw polysaccharide materials for food processing is generally performed by gravimetric analysis or titrimetric methods, which are time- and energy-consuming, non-eco-friendly and sample destructive. The present study develops and validates a new approach, based on the use of Fourier transform infrared (FTIR) spectroscopy, resulting in a model of the water content of carboxymethyl cellulose (CMC) polysaccharides. Samples of CMC were exposed to different relative humidity conditions. Water content was determined by standard gravimetric methods (OIV-Oeno 404-2010) and compared with the area of FTIR absorption in the range 3675-2980 cm-1, attributed to the stretching of OH groups. The strong correlation between gravimetric results and FTIR area (R2 = 0.88) showed no signs of bias across the water content range. A cross-validation technique to predict the water content by band area was assessed obtaining a general equation: y = 2.12 x + 2.80 with a high repetitively and good prediction of the tested models.


Assuntos
Carboximetilcelulose Sódica/química , Aditivos Alimentares/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química
15.
Carbohydr Polym ; 267: 118196, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-34119163

RESUMO

Topical instillation of eye drops represents the treatment of choice for many ocular diseases. Ophthalmic formulations must meet general requirements, i.e. pH, osmolality, transparency and viscosity to ensure adequate retention without inducing irritation and the development of eye infections. We developed a phosphorylated xanthan gum-Ag(I) complex (XGP-Ag) showing pH (pH = 7.1 ± 0.3) and osmolality values (311 ± 2 mOsm/kg) close to that of human tears (pH = 6.5-7.6 and 304 ± 23 mOsm/kg) thanks to the presence of phosphate moieties along the chain. The presence of phosphate groups covalently bound to the XG chains avoids their dispersion in fluid, thus reducing the risk of corneal calcification. 0.02% w/v XGP-Ag solution showed high transparency (higher than 95% along the entire visible range), adequate refractive index (1.334 ± 0.001) and viscosity in the range: γ 1 s-1-10,000 s- 1 (26.4 ± 0.8-2.1 ± 0.4 mPa·s). Its cytotoxicity and capability to hinder bacterial proliferation was also verified.


Assuntos
Antibacterianos/farmacologia , Complexos de Coordenação/farmacologia , Soluções Oftálmicas/farmacologia , Polissacarídeos Bacterianos/farmacologia , Prata/farmacologia , Viscosidade/efeitos dos fármacos , Animais , Antibacterianos/química , Antibacterianos/toxicidade , Complexos de Coordenação/química , Complexos de Coordenação/toxicidade , Humanos , Camundongos , Testes de Sensibilidade Microbiana , Células NIH 3T3 , Soluções Oftálmicas/química , Soluções Oftálmicas/toxicidade , Organofosfatos/química , Organofosfatos/farmacologia , Organofosfatos/toxicidade , Fosforilação , Polímeros/química , Polímeros/farmacologia , Polímeros/toxicidade , Polissacarídeos Bacterianos/química , Polissacarídeos Bacterianos/toxicidade , Pseudomonas fluorescens/efeitos dos fármacos , Refratometria , Reologia , Prata/química , Prata/toxicidade , Staphylococcus epidermidis/efeitos dos fármacos
16.
Carbohydr Polym ; 271: 118452, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34364546

RESUMO

The present paper describes the functionalization of sodium hyaluronate (NaHA) with a small molecule (2-((N-(6-aminohexyl)-4-methoxyphenyl)sulfonamido)-N-hydroxyacetamide) (MMPI) having proven inhibitory activity against membrane metalloproteins involved in inflammatory processes (i.e. MMP12). The obtained derivative (HA-MMPI) demonstrated an increased resistance to the in-vitro degradation by hyaluronidase, viscoelastic properties close to those of healthy human synovial fluid, cytocompatibility towards human chondrocytes and nanomolar affinity towards MMP 12. Thus, HA-MMPI can be considered a good candidate as viscosupplement in the treatment of knee osteoarticular disease.


Assuntos
Ácido Hialurônico/farmacologia , Ácidos Hidroxâmicos/farmacologia , Inibidores de Metaloproteinases de Matriz/farmacologia , Sulfonamidas/farmacologia , Substâncias Viscoelásticas/farmacologia , Domínio Catalítico , Condrócitos/efeitos dos fármacos , Ácido Hialurônico/síntese química , Ácido Hialurônico/metabolismo , Ácido Hialurônico/toxicidade , Ácidos Hidroxâmicos/síntese química , Ácidos Hidroxâmicos/metabolismo , Ácidos Hidroxâmicos/toxicidade , Metaloproteinase 12 da Matriz/química , Metaloproteinase 12 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/síntese química , Inibidores de Metaloproteinases de Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/toxicidade , Ligação Proteica , Sulfonamidas/síntese química , Sulfonamidas/metabolismo , Sulfonamidas/toxicidade , Substâncias Viscoelásticas/síntese química , Substâncias Viscoelásticas/metabolismo , Substâncias Viscoelásticas/toxicidade
17.
Food Chem ; 355: 129634, 2021 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-33799240

RESUMO

Glucosinolates are a group of secondary metabolites occurring in all the vegetables belonging to the Brassicaceae family. Upon tissue damage, glucosinolates are hydrolyzed by myrosinase to a series of degradation products, including isothiocyanates, which are important for their health-promoting effects in humans. The glucosinolate-myrosinase system has been characterized in several Brassica species, of which white mustard (Sinapis alba) has been studied the most. In this study, a new HPLC-UV assay to evaluate the activities and kinetics of myrosinases in aqueous extracts, which closely represent the physiological conditions of plant tissues, was developed. This method was tested on myrosinases extracted from broccoli and cauliflower inflorescences, employing sinigrin and glucoraphanin as substrates. The results showed a strong inhibition of both enzymes at high substrate concentrations. The main issues related to kinetic analysis on the glucosinolate-myrosinase system were also elucidated.


Assuntos
Brassicaceae/enzimologia , Cromatografia Líquida de Alta Pressão , Glucosinolatos/metabolismo , Glicosídeo Hidrolases/metabolismo , Glucosinolatos/química , Humanos , Hidrólise , Cinética
18.
J Mater Sci Mater Med ; 21(8): 2491-500, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20499140

RESUMO

PVA based hydrogels were synthesised using, as crosslinking agent, trisodium trimetaphosphate (STMP) to obtain potential substitutes for the vitreous body of the eye. The hydrogels, obtained using different amounts of STMP, were characterised by Infrared Spectroscopy which confirmed the successful occurrence of crosslinking reaction. The mechanical spectra of the fully hydrated samples confirmed covalently crosslinked systems (i.e. G' > G''). The rheological analysis pointed out that only one of the hydrogels (PVA STMP 8:1) showed a behaviour similar to that of human vitreous. The hydrogel was also subjected to injection through a small needle, a procedure that is essential in the use of vitreous substitutes. Further analysis in terms of light transmittance, water content measurements, diffusion coefficient and cytotoxicity confirmed the applicability of such a hydrogel as vitreous substitute.


Assuntos
Hidrogéis/uso terapêutico , Implantes Experimentais , Fosfatos/química , Álcool de Polivinil/química , Corpo Vítreo , Animais , Sobrevivência Celular/efeitos dos fármacos , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/farmacologia , Humanos , Hidrogéis/química , Hidrogéis/metabolismo , Hidrogéis/farmacologia , Teste de Materiais , Camundongos , Células NIH 3T3 , Fosfatos/farmacologia , Reologia , Resistência ao Cisalhamento , Espectrofotometria Infravermelho , Corpo Vítreo/cirurgia , Água/metabolismo
19.
Carbohydr Polym ; 227: 115347, 2020 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-31590845

RESUMO

Viscosupplementation, i.e. intra-articular injection of hyaluronic acid derivatives, is considered as the most effective treatment for patients with mild to moderate osteoarthritis. Even if hyaluronic acid is still considered as the gold standard, research is now focusing on the development of new products with enhanced injectability and yet reasonable viscoelastic behavior for OA treatment. A Gellan Gum (GG) hydrogel was synthesized and coated with crosslinked polyvinyl alcohol (PVA) to protect the polysaccharide from degradation during sterilization and improve its performance for the foreseen application. Thermal analyses indicated that mixed hydrogel showed a higher degree of structuring than the bare polysaccharide core without losing its swelling properties, thanks to the hydrophylicity of both coating and cross-linking agent. The PVA coating increased elastic and viscous moduli of the polysaccharide core conferring it a higher resistance to shear and compression and better thixotropic properties. Despite the double crosslinking, hydrogel was injectable. Cytocompatibility towards chondrocytes was verified.


Assuntos
Hidrogéis/química , Polissacarídeos Bacterianos/química , Álcool de Polivinil/química , Animais , Proliferação de Células , Sobrevivência Celular , Condrócitos , Módulo de Elasticidade , Humanos , Camundongos , Células NIH 3T3 , Osteoartrite/tratamento farmacológico , Viscosidade
20.
Biophys Chem ; 249: 106149, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30981137

RESUMO

Proteins in solution affect the structural and dynamic properties of the bulk water at the protein-water interface, resulting in a contribution to the order of the hydration water. Theoretical and experimental NMR relaxation methods were developed to study the dynamic properties of water molecules in the protein hydration shell. Water non-selective and selective relaxation rates, were shown to be sensitive to contributions from ordered solvent molecules at protein surface. The average rotational correlation time of water molecules in the protein hydration shell was determined for three protein systems of different size: ribonuclease A, human serum albumin and fibrinogen. The knowledge of these properties is an important step toward the determination of the size of the water ordering contributions originate in proteins systems.


Assuntos
Fibrinogênio/química , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Ribonuclease Pancreático/química , Albumina Sérica Humana/química , Água/química , Humanos , Propriedades de Superfície , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA