Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Chronic Stress (Thousand Oaks) ; 8: 24705470231225320, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38250007

RESUMO

Background: Understanding distinct neurobiological mechanisms underlying bipolar disorder (BD) and major depressive disorder (MDD) is crucial for accurate diagnosis and the discovery of novel and more effective targeted treatments. Previous diffusion-weighted MRI studies have suggested some common frontotemporal corticolimbic system white matter (WM) abnormalities across the disorders. However, critical to the development of more precise diagnosis and treatment is identifying distinguishing abnormalities. Promising candidates include more prominent frontotemporal WM abnormalities observed in BD in the uncinate fasciculus (UF) that have been associated with frontal-amygdala functional dysconnectivity, and with suicide that is especially high in BD. Prior work also showed differentiation in metabotropic glutamate receptor 5 (mGlu5) abnormalities in BD versus MDD, which could be a mechanism affected in the frontotemporal system. However, associations between WM and mGlu5 have not been examined previously as a differentiator of BD. Using a multimodal neuroimaging approach, we examined WM integrity alterations in the disorders and their associations with mGluR5 levels. Methods: Individuals with BD (N = 21), MDD (N = 10), and HC (N = 25) participated in structural and diffusion-weighted MRI scanning, and imaging with [18F]FPEB PET for quantification of mGlu5 availability. Whole-brain analyses were used to assess corticolimbic WM matter fractional anisotropy (FA) across BD and MDD relative to HC; abnormalities were tested for associations with mGlu5 availability. Results: FA corticolimbic reductions were observed in both disorders and altered UF WM integrity was observed only in BD. In BD, lower UF FA was associated with lower amygdala mGlu5 availability (p < .05). Conclusions: These novel preliminary findings suggest important associations between lower UF FA and lower amygdala mGlu5 levels that could represent a disorder-specific neural mechanism in which mGluR5 is associated with the frontotemporal dysconnectivity of the disorder.

2.
J Affect Disord ; 361: 415-424, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38876317

RESUMO

BACKGROUND: Elucidating biological mechanisms contributing to bipolar disorder (BD) is key to improved diagnosis and treatment development. With converging evidence implicating the metabotropic glutamate receptor 5 (mGlu5) in the pathology of BD, here, we therefore test the hypothesis that recently identified deficits in mGlu5 are associated with functional brain differences during emotion processing in BD. METHODS: Positron emission tomography (PET) with [18F]FPEB was used to measure mGlu5 receptor availability and functional imaging (fMRI) was performed while participants completed an emotion processing task. Data were analyzed from 62 individuals (33 ± 12 years, 45 % female) who completed both PET and fMRI, including individuals with BD (n = 18), major depressive disorder (MDD: n = 20), and psychiatrically healthy comparisons (HC: n = 25). RESULTS: Consistent with some prior reports, the BD group displayed greater activation during fear processing relative to MDD and HC, notably in right lateralized frontal and parietal brain regions. In BD, (but not MDD or HC) lower prefrontal mGlu5 availability was associated with greater activation in bilateral pre/postcentral gyri and cuneus during fear processing. Furthermore, greater prefrontal mGlu5-related brain activity in BD was associated with difficulties in psychomotor function (r≥0.904, p≤0.005) and attention (r≥0.809, p≤0.028). LIMITATIONS: The modest sample size is the primary limitation. CONCLUSIONS: Deficits in prefrontal mGlu5 in BD were linked to increased cortical activation during fear processing, which in turn was associated with impulsivity and attentional difficulties. These data further implicate an mGlu5-related mechanism unique to BD. More generally these data suggest integrating PET and fMRI can provide novel mechanistic insights.


Assuntos
Transtorno Bipolar , Transtorno Depressivo Maior , Emoções , Imageamento por Ressonância Magnética , Tomografia por Emissão de Pósitrons , Córtex Pré-Frontal , Receptor de Glutamato Metabotrópico 5 , Humanos , Feminino , Transtorno Bipolar/fisiopatologia , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Masculino , Adulto , Córtex Pré-Frontal/fisiopatologia , Córtex Pré-Frontal/diagnóstico por imagem , Córtex Pré-Frontal/metabolismo , Transtorno Depressivo Maior/fisiopatologia , Transtorno Depressivo Maior/diagnóstico por imagem , Transtorno Depressivo Maior/metabolismo , Emoções/fisiologia , Pessoa de Meia-Idade , Adulto Jovem , Medo/fisiologia
3.
Chronic Stress (Thousand Oaks) ; 6: 24705470221105804, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35958037

RESUMO

Background: A robust literature supports the role of the metabotropic glutamate receptor type 5 (mGluR5) in cognitive functioning. mGluR5 is also implicated in the pathophysiology of posttraumatic stress disorder (PTSD) and major depressive disorder (MDD), which are characterized by cognitive alterations. However, the relationship between mGluR5 and cognition in MDD and PTSD has not yet been directly investigated. To address this gap, we examined the relationship between in vivo mGluR5 availability and cognition in PTSD, MDD, and matched healthy adults (HA). Methods: Individuals with PTSD (N = 28) and MDD (N = 21), and HA (N = 28) were matched for age, gender, and smoking status. Participants completed 18F-FPEB positron emission tomography (PET) scan, psychiatric and cognitive assessments. Results: Across models examining the relationship between mGluR5 availability and different domains of cognition across diagnostic groups, only the interaction of diagnosis*attention was significant (F 4,64 = 3.011, P = .024). Higher mGluR5 availability was associated with poorer attention in PTSD in 4 frontolimbic regions of interests (ROI's: OFC (r = -.441, P = .016), vmPFC (r = -.408, P = .028), dlPFC (r = -.421, P = .023), hippocampus (r = -.422, P = .025). By contrast, mGluR5 availability in the MDD group was positively related to Attention (ATTN) in the OFC (r = .590, P = .006), vmPFC (r = .653, P = .002), and dlPFC (r = .620, P = .004). Findings in the hippocampus for MDD followed the same pattern but did not survive correction for multiple comparisons (r = .480, P = .036). ATTN and mGluR5 availability were not significantly related in the HA group. Of note, in MANOVA analyses group*ATTN interaction results in the OFC did not survive multiple comparisons (P = .046). All other findings survived correction for multiple comparisons and remained significant when covarying for potential confounds (eg, depressed mood). Conclusions: We observed a significant relationship between frontolimbic mGluR5 availability and performance on tests of attention in individuals with MDD and PTSD. This finding aligns with animal work showing dysregulation in mGluR5 in cognitive functioning, and differed as a function of diagnosis. Results suggest interventions targeting mGluR5 may help bolster cognitive difficulties, highlighting the importance of employing different mGluR5 directed treatment strategies in MDD and PTSD.

4.
Chronic Stress (Thousand Oaks) ; 4: 2470547020980681, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33426409

RESUMO

BACKGROUND: Ketamine is a novel fast-acting antidepressant. Acute ketamine treatment can reverse microstructure deficits and normalize functional alterations in the brain, but little is known about the impacts of ketamine on brain volumes in individuals with depression. METHODS: We used 3 T magnetic resonance imaging (MRI) and tensorbased morphological methods to investigate the regional volume differences for 29 healthy control (HC) subjects and 21 subjects with major depressive disorder (MDD), including 10 subjects with comorbid post-traumatic stress disorder (PTSD). All the subjects participated in MRI scanning before and 24 h post intravenous ketamine infusion. The effects of acute ketamine administration on HC, MDD, and MDD/PTSD groups were examined separately by whole-brain voxel-wise t-tests. RESULTS: Our data showed smaller volume of inferior frontal gyrus (IFG, opercular part) in MDD and MDD/PTSD subjects compared to HC, and a significant correlation between opercular IFG volume and depressive severity in MDD subjects only. Ketamine administration normalized the structural alterations of opercular IFG in both MDD and MDD/PTSD groups, and significantly improved depressive and PTSD symptoms. Twenty-four hours after a single ketamine infusion, there were two clusters of voxels with volume changes in MDD subjects, including significantly increased volumes of opercular IFG. No significant structural alterations were found in the MDD/PTSD or HC groups. CONCLUSION: These findings provide direct evidence that acute ketamine administration can normalize structural alterations associated with depression and highlight the importance of IFG in the guidance of future therapeutic targets.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA