Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Philos Trans A Math Phys Eng Sci ; 381(2244): 20220035, 2023 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-36774954

RESUMO

Cylinder buckling is notoriously sensitive to small geometric imperfections. This is an underlying motivation for the use of knock-down factors in the design process, especially in circumstances in which minimum weight is a key design goal, an approach well-established at NASA, for example. Not only does this provide challenges in the practical design of this commonly occurring structural load-bearing configuration, but also in the carefully controlled laboratory setting. The recent development of 3D-printing (additive manufacturing) provides an appealing experimental platform for conducting relatively high-fidelity experiments on the buckling of cylinders. However, in addition to geometric precision, there are a number of shortcomings with this approach, and this article seeks to describe the challenges and opportunities associated with the use of 3D-printing in cylinder buckling in general, and probing the robustness of equilibrium configurations in particular. This article is part of the theme issue 'Probing and dynamics of shock sensitive shells'.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA