Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
J Membr Biol ; 252(2-3): 159-172, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30746562

RESUMO

The fidelity of cAMP in controlling numerous cellular functions rests crucially on the precise organization of cAMP microdomains that are sustained by the scaffolding properties of adenylyl cyclase. Earlier studies suggested that AC8 enriches in lipid rafts where it interacts with cytoskeletal elements. However, these are not stable structures and little is known about the dynamics of AC8 secretion and its interactions. The present study addresses the role of the cytoskeleton in maintaining the AC8 microenvironment, particularly in the context of the trafficking route of AC8 and its interaction with caveolin1. Here, biochemical and live-cell imaging approaches expose a complex, dynamic interaction between AC8 and caveolin1 that affects AC8 processing, targeting and responsiveness in plasma membrane lipid rafts. Site-directed mutagenesis and pharmacological approaches reveal that AC8 is processed with complex N-glycans and associates with lipid rafts en route to the plasma membrane. A dynamic picture emerges of the trafficking and interactions of AC8 while travelling to the plasma membrane, which are key to the organization of the AC8 microdomain.


Assuntos
Adenilil Ciclases/metabolismo , Caveolina 1/metabolismo , AMP Cíclico/metabolismo , Citoesqueleto/metabolismo , Microdomínios da Membrana/metabolismo , Adenilil Ciclases/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Brefeldina A/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Caveolina 1/antagonistas & inibidores , Caveolina 1/genética , Citoesqueleto/efeitos dos fármacos , Citoesqueleto/ultraestrutura , Expressão Gênica , Genes Reporter , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Células HEK293 , Humanos , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/ultraestrutura , Mutagênese Sítio-Dirigida , Transporte Proteico/efeitos dos fármacos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Tiazolidinas/farmacologia , beta-Ciclodextrinas/farmacologia
2.
Biochem J ; 462(2): 199-213, 2014 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-25102028

RESUMO

Recent advances in the AC (adenylate cyclase)/cAMP field reveal overarching roles for the ACs. Whereas few processes are unaffected by cAMP in eukaryotes, ranging from the rapid modulation of ion channel kinetics to the slowest developmental effects, the large number of cellular processes modulated by only three intermediaries, i.e. PKA (protein kinase A), Epacs (exchange proteins directly activated by cAMP) and CNG (cyclic nucleotide-gated) channels, poses the question of how selectivity and fine control is achieved by cAMP. One answer rests on the number of differently regulated and distinctly expressed AC species. Specific ACs are implicated in processes such as insulin secretion, immunological responses, sino-atrial node pulsatility and memory formation, and specific ACs are linked with particular diseased conditions or predispositions, such as cystic fibrosis, Type 2 diabetes and dysrhythmias. However, much of the selectivity and control exerted by cAMP lies in the sophisticated properties of individual ACs, in terms of their coincident responsiveness, dynamic protein scaffolding and organization of cellular microassemblies. The ACs appear to be the centre of highly organized microdomains, where both cAMP and Ca2+, the other major influence on ACs, change in patterns quite discrete from the broad cellular milieu. How these microdomains are organized is beginning to become clear, so that ACs may now be viewed as fundamental signalling centres, whose properties exceed their production of cAMP. In the present review, we summarize how ACs are multiply regulated and the steps that are put in place to ensure discrimination in their signalling. This includes scaffolding of targets and modulators by the ACs and assembling of signalling nexuses in discrete cellular domains. We also stress how these assemblies are cell-specific, context-specific and dynamic, and may be best addressed by targeted biosensors. These perspectives on the organization of ACs uncover new strategies for intervention in systems mediated by cAMP, which promise far more informed specificity than traditional approaches.


Assuntos
Adenilil Ciclases/metabolismo , Microdomínios da Membrana/metabolismo , Inibidores de Adenilil Ciclases , Animais , Cálcio/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Transdução de Sinais
3.
Biochem J ; 464(1): 73-84, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25133583

RESUMO

SOCE (store-operated Ca2+ entry) is mediated via specific plasma membrane channels in response to ER (endoplasmic reticulum) Ca2+ store depletion. This route of Ca2+ entry is central to the dynamic interplay between Ca2+ and cAMP signalling in regulating the activity of Ca2+-sensitive adenylate cyclase isoforms (AC1, AC5, AC6 and AC8). Two proteins have been identified as key components of SOCE: STIM1 (stromal interaction molecule 1), which senses ER Ca2+ store content and translocates to the plasma membrane upon store depletion, where it then activates Orai1, the pore-forming component of the CRAC (Ca2+ release-activated Ca2+) channel. Previous studies reported that co-expression of STIM1 and Orai1 in HEK-293 (human embryonic kidney 293) cells enhances Ca2+-stimulated AC8 activity and that AC8 and Orai1 directly interact to enhance this regulation. Nonetheless, the additional involvement of TRPC (transient receptor potential canonical) channels in SOCE has also been proposed. In the present study, we evaluate the contribution of TRPC1 to SOCE-mediated regulation of Ca2+-sensitive ACs in HEK-293 cells stably expressing AC8 (HEK-AC8) and HSG (human submandibular gland) cells expressing an endogenous Ca2+-inhibited AC6. We demonstrate a role for TRPC1 as an integral component of SOCE, alongside STIM1 and Orai1, in regulating Ca2+ fluxes within AC microdomains and influencing cAMP production.


Assuntos
Adenilil Ciclases/fisiologia , Sinalização do Cálcio/fisiologia , Canais de Cátion TRPC/fisiologia , Animais , Cálcio/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Ratos , Glândula Submandibular/metabolismo
4.
EMBO J ; 29(16): 2772-87, 2010 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-20664520

RESUMO

Biochemical studies suggest that G-protein-coupled receptors (GPCRs) achieve exquisite signalling specificity by forming selective complexes, termed signalosomes. Here, using cAMP biosensors in single cells, we uncover a pre-assembled, constitutively active GPCR signalosome, that couples the relaxin receptor, relaxin family peptide receptor 1 (RXFP1), to cAMP following receptor stimulation with sub-picomolar concentrations of peptide. The physiological effects of relaxin, a pleiotropic hormone with therapeutic potential in cancer metastasis and heart failure, are generally attributed to local production of the peptide, that occur in response to sub-micromolar concentrations. The highly sensitive signalosome identified here provides a regulatory mechanism for the extremely low levels of relaxin that circulate. The signalosome includes requisite Galpha(s), Gbetagamma and adenylyl cyclase 2 (AC2); AC2 is functionally coupled to RXFP1 through AKAP79 binding to helix 8 of the receptor; activation of AC2 is tonically opposed by protein kinase A (PKA)-activated PDE4D3, scaffolded through a beta-arrestin 2 interaction with Ser(704) of the receptor C-terminus. This elaborate, pre-assembled, ligand-independent GPCR signalosome represents a new paradigm in GPCR signalling and provides a mechanism for the distal actions of low circulating levels of relaxin.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adenilil Ciclases/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Peptídeos/metabolismo , Relaxina/metabolismo , Transdução de Sinais , Proteínas de Ancoragem à Quinase A/metabolismo , Animais , Arrestinas/metabolismo , Linhagem Celular , Células Cultivadas , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Humanos , Ratos , beta-Arrestina 2 , beta-Arrestinas
5.
J Cell Sci ; 125(Pt 4): 869-86, 2012 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-22399809

RESUMO

The central and pervasive influence of cAMP on cellular functions underscores the value of stringent control of the organization of adenylyl cyclases (ACs) in the plasma membrane. Biochemical data suggest that ACs reside in membrane rafts and could compartmentalize intermediary scaffolding proteins and associated regulatory elements. However, little is known about the organization or regulation of the dynamic behaviour of ACs in a cellular context. The present study examines these issues, using confocal image analysis of various AC8 constructs, combined with fluorescence recovery after photobleaching and fluorescence correlation spectroscopy. These studies reveal that AC8, through its N-terminus, enhances the cortical actin signal at the plasma membrane; an interaction that was confirmed by GST pull-down and immunoprecipitation experiments. AC8 also associates dynamically with lipid rafts; the direct association of AC8 with sterols was confirmed in Förster resonance energy transfer experiments. Disruption of the actin cytoskeleton and lipid rafts indicates that AC8 tracks along the cytoskeleton in a cholesterol-enriched domain, and the cAMP that it produces contributes to sculpting the actin cytoskeleton. Thus, an adenylyl cyclase is shown not just to act as a scaffold, but also to actively orchestrate its own micro-environment, by associating with the cytoskeleton and controlling the association by producing cAMP, to yield a highly organized signalling hub.


Assuntos
Citoesqueleto de Actina/metabolismo , Adenilil Ciclases/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Colesterol/metabolismo , Adenilil Ciclases/química , Adenilil Ciclases/genética , Transporte Biológico/efeitos dos fármacos , AMP Cíclico/biossíntese , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Recuperação de Fluorescência Após Fotodegradação , Células HEK293 , Humanos , Imunoprecipitação , Microdomínios da Membrana/química , Microdomínios da Membrana/metabolismo , Ligação Proteica , Transdução de Sinais , Espectrometria de Fluorescência
6.
J Cell Sci ; 125(Pt 23): 5850-9, 2012 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-22976297

RESUMO

Adenylyl cyclase (AC) isoforms can participate in multimolecular signalling complexes incorporating A-kinase anchoring proteins (AKAPs). We recently identified a direct interaction between Ca(2+)-sensitive AC8 and plasma membrane-targeted AKAP79/150 (in cultured pancreatic insulin-secreting cells and hippocampal neurons), which attenuated the stimulation of AC8 by Ca(2+) entry (Willoughby et al., 2010). Here, we reveal that AKAP79 recruits cAMP-dependent protein kinase (PKA) to mediate the regulatory effects of AKAP79 on AC8 activity. Modulation by PKA is a novel means of AC8 regulation, which may modulate or apply negative feedback to the stimulation of AC8 by Ca(2+) entry. We show that the actions of PKA are not mediated indirectly via PKA-dependent activation of protein phosphatase 2A (PP2A) B56δ subunits that associate with the N-terminus of AC8. By site-directed mutagenesis we identify Ser-112 as an essential residue for direct PKA phosphorylation of AC8 (Ser-112 lies within the N-terminus of AC8, close to the site of AKAP79 association). During a series of experimentally imposed Ca(2+) oscillations, AKAP79-targeted PKA reduced the on-rate of cAMP production in wild-type but not non-phosphorylatable mutants of AC8, which suggests that the protein-protein interaction may provide a feedback mechanism to dampen the downstream consequences of AC8 activation evoked by bursts of Ca(2+) activity. This fine-tuning of Ca(2+)-dependent cAMP dynamics by targeted PKA could be highly significant for cellular events that depend on the interplay of Ca(2+) and cAMP, such as pulsatile hormone secretion and memory formation.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Adenilil Ciclases/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Western Blotting , Linhagem Celular , Humanos , Imunoprecipitação , Fosforilação
7.
Biochem J ; 455(1): 47-56, 2013 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-23889134

RESUMO

AC2 (adenylate cyclase 2) is stimulated by activation of Gq-coupled muscarinic receptors through PKC (protein kinase C) to generate localized cAMP in HEK (human embryonic kidney)-293 cells. In the present study, we utilized a sensitive live-cell imaging technique to unravel the proteins that play essential roles in a Gq-coupled muscarinic receptor-mediated cAMP signalling complex. We reveal that, upon agonist binding to the Gq-coupled muscarinic receptor, AKAP79 (A-kinase-anchoring protein 79) recruits PKC to activate AC2 to produce cAMP. The cAMP formed is degraded by PDE4 (phosphodiesterase 4) activated by an AKAP-anchored PKA (protein kinase A). Calcineurin, a phosphatase bound to AKAP79, is not involved in this regulation. Overall, a transient cAMP increase is generated from AC2 by Gq-coupled muscarinic receptor activation, subject to sophisticated regulation through AKAP79, PKC, PDE4 and PKA, which significantly enhances acetylcholine-mediated signalling.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Adenilil Ciclases/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Proteína Quinase C/metabolismo , Receptor Muscarínico M3/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Acetilcolina/metabolismo , Adenilil Ciclases/genética , Animais , Calcineurina/genética , Calcineurina/metabolismo , Cálcio/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/genética , Regulação da Expressão Gênica , Células HEK293 , Humanos , Proteína Quinase C/genética , Ratos , Receptor Muscarínico M3/genética , Transdução de Sinais , Análise de Célula Única , Transfecção
8.
Anal Bioanal Chem ; 405(29): 9333-42, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24071896

RESUMO

Calmodulin (CaM) is a highly conserved intracellular Ca(2+)-binding protein that exerts important functions in many cellular processes. Prominent examples of CaM-regulated proteins are adenylyl cyclases (ACs), which synthesize cAMP as a central second messenger. The interaction of ACs with CaM represents the link between Ca(2+)-signaling and cAMP-signaling pathways. Thereby, different AC isoforms stimulated by CaM, comprise diverse mechanisms of regulation by the Ca(2+) sensor. To extend the structural information about the detailed mechanisms underlying the regulation of AC8 by CaM, we employed an integrated approach combining chemical cross-linking and mass spectrometry with two peptides representing the CaM-binding regions of AC8. These experiments reveal that the structures of CaM/AC8 peptide complexes are similar to that of the CaM/skeletal muscle myosin light chain kinase peptide complex where CaM is collapsed around the target peptide that binds to CaM in an antiparallel orientation. Cross-linking experiments were complemented by investigating the binding of AC8 peptides to CaM thermodynamically with isothermal titration calorimetry. There were no hints on a complex, in which both AC8 peptides bind simultaneously to CaM, refining our current understanding of the interaction between CaM and AC8.


Assuntos
Adenilil Ciclases/química , Calmodulina/química , Adenilil Ciclases/genética , Adenilil Ciclases/metabolismo , Animais , Cálcio/metabolismo , Calmodulina/genética , Calmodulina/metabolismo , Bovinos , Ligação Proteica , Estrutura Terciária de Proteína , Termodinâmica
9.
Biochem J ; 447(3): 393-405, 2012 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22906005

RESUMO

Direct phosphorylation of AC2 (adenylyl cyclase 2) by PKC (protein kinase C) affords an opportunity for AC2 to integrate signals from non-canonical pathways to produce the second messenger, cyclic AMP. The present study shows that stimulation of AC2 by pharmacological activation of PKC or muscarinic receptor activation is primarily the result of phosphorylation of Ser490 and Ser543, as opposed to the previously proposed Thr1057. A double phosphorylation-deficient mutant (S490/543A) of AC2 was insensitive to PMA (phorbol myristic acid) and CCh (carbachol) stimulation, whereas a double phosphomimetic mutant (S490/543D) mimicked the activity of PKC-activated AC2. Putative Gßγ-interacting sites are in the immediate environment of these PKC phosphorylation sites (Ser490 and Ser543) that are located within the C1b domain of AC2, suggesting a significant regulatory importance of this domain. Consequently, we examined the effect of both Gq-coupled muscarinic and Gi-coupled somatostatin receptors. Employing pharmacological and FRET (fluorescence resonance energy transfer)-based real-time single cell imaging approaches, we found that Gßγ released from the Gq-coupled muscarinic receptor or Gi-coupled somatostatin receptors exert inhibitory or stimulatory effects respectively. These results underline the sophisticated regulatory capacities of AC2, in not only being subject to regulation by PKC, but also and in an opposite manner to Gßγ subunits, depending on their source.


Assuntos
Adenilil Ciclases/metabolismo , Subunidades alfa Gi-Go de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Receptor Muscarínico M3/metabolismo , Adenilil Ciclases/genética , Animais , Carbacol/farmacologia , AMP Cíclico/biossíntese , Ativação Enzimática , Células HEK293 , Humanos , Mutação , Fosforilação , Proteína Quinase C/genética , Proteína Quinase C/metabolismo , Ratos , Receptor Muscarínico M3/genética , Receptores de Somatostatina/metabolismo , Análise de Célula Única
10.
Biochemistry ; 51(40): 7917-29, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-22971080

RESUMO

Calmodulin (CaM), by mediating the stimulation of the activity of two adenylyl cyclases (ACs), plays a key role in integrating the cAMP and Ca(2+) signaling systems. These ACs, AC1 and AC8, by decoding discrete Ca(2+) signals can contribute to fine-tuning intracellular cAMP dynamics, particularly in neurons where they predominate. CaM comprises an α-helical linker separating two globular regions at the N-terminus and the C-terminus that each bind two Ca(2+) ions. These two lobes have differing affinities for Ca(2+), and they can interact with target proteins independently. This study explores previous indications that the two lobes of CaM can regulate AC1 and AC8 differently and thereby yield different responses to cellular transitions in [Ca(2+)](i). We first compared by glutathione S-transferase pull-down assays and offline nanoelectrospray ionization mass spectrometry the interaction of CaM and Ca(2+)-binding deficient mutants of CaM with the internal CaM binding domain (CaMBD) of AC1 and the two terminal CaMBDs of AC8. We then examined the influence of these three CaMBDs on Ca(2+) binding by native and mutated CaM in stopped-flow experiments to quantify their interactions. The three CaMBDs show quite distinct interactions with the two lobes of CaM. These findings establish the critical kinetic differences between the mechanisms of Ca(2+)-CaM activation of AC1 and AC8, which may underpin their different physiological roles.


Assuntos
Adenilil Ciclases/metabolismo , Calmodulina/metabolismo , Regulação Enzimológica da Expressão Gênica/fisiologia , Adenilil Ciclases/efeitos dos fármacos , Adenilil Ciclases/genética , Animais , Cálcio/metabolismo , Calmodulina/química , Glutationa Transferase/metabolismo , Células HEK293 , Humanos , Mutação , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína , Ratos
11.
J Biol Chem ; 286(38): 32962-75, 2011 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-21771783

RESUMO

PKA anchoring proteins (AKAPs) optimize the efficiency of cAMP signaling by clustering interacting partners. Recently, AKAP79 has been reported to directly bind to adenylyl cyclase type 8 (AC8) and to regulate its responsiveness to store-operated Ca(2+) entry (SOCE). Although AKAP79 is well targeted to the plasma membrane via phospholipid associations with three N-terminal polybasic regions, recent studies suggest that AKAP79 also has the potential to be palmitoylated, which may specifically allow it to target the lipid rafts where AC8 resides and is regulated by SOCE. In this study, we have addressed the role of palmitoylation of AKAP79 using a combination of pharmacological, mutagenesis, and cell biological approaches. We reveal that AKAP79 is palmitoylated via two cysteines in its N-terminal region. This palmitoylation plays a key role in targeting the AKAP to lipid rafts in HEK-293 cells. Mutation of the two critical cysteines results in exclusion of AKAP79 from lipid rafts and alterations in its membrane diffusion behavior. This is accompanied by a loss of the ability of AKAP79 to regulate SOCE-dependent AC8 activity in intact cells and decreased PKA-dependent phosphorylation of raft proteins, including AC8. We conclude that palmitoylation plays a key role in the targeting and action of AKAP79. This novel property of AKAP79 adds an unexpected regulatory and targeting option for AKAPs, which may be exploited in the cellular context.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Adenilil Ciclases/metabolismo , Cálcio/metabolismo , Lipoilação , Microdomínios da Membrana/metabolismo , Animais , Linhagem Celular , Centrifugação com Gradiente de Concentração , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Cisteína/metabolismo , Difusão/efeitos dos fármacos , Recuperação de Fluorescência Após Fotodegradação , Humanos , Inositol/metabolismo , Lipoilação/efeitos dos fármacos , Microdomínios da Membrana/efeitos dos fármacos , Octoxinol/farmacologia , Palmitatos/farmacologia , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ratos , Receptores Adrenérgicos beta/metabolismo , Solubilidade/efeitos dos fármacos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo , Especificidade por Substrato/efeitos dos fármacos
12.
J Biol Chem ; 286(11): 9079-96, 2011 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-21177871

RESUMO

A-kinase anchoring proteins (AKAPs) tether protein kinase A (PKA) and other signaling proteins to defined intracellular sites, thereby establishing compartmentalized cAMP signaling. AKAP-PKA interactions play key roles in various cellular processes, including the regulation of cardiac myocyte contractility. We discovered small molecules, 3,3'-diamino-4,4'-dihydroxydiphenylmethane (FMP-API-1) and its derivatives, which inhibit AKAP-PKA interactions in vitro and in cultured cardiac myocytes. The molecules bind to an allosteric site of regulatory subunits of PKA identifying a hitherto unrecognized region that controls AKAP-PKA interactions. FMP-API-1 also activates PKA. The net effect of FMP-API-1 is a selective interference with compartmentalized cAMP signaling. In cardiac myocytes, FMP-API-1 reveals a novel mechanism involved in terminating ß-adrenoreceptor-induced cAMP synthesis. In addition, FMP-API-1 leads to an increase in contractility of cultured rat cardiac myocytes and intact hearts. Thus, FMP-API-1 represents not only a novel means to study compartmentalized cAMP/PKA signaling but, due to its effects on cardiac myocytes and intact hearts, provides the basis for a new concept in the treatment of chronic heart failure.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/antagonistas & inibidores , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , AMP Cíclico/metabolismo , Miócitos Cardíacos/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Sistemas do Segundo Mensageiro/fisiologia , Proteínas de Ancoragem à Quinase A/genética , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/genética , Animais , Doença Crônica , AMP Cíclico/genética , Proteínas Quinases Dependentes de AMP Cíclico/genética , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Insuficiência Cardíaca/tratamento farmacológico , Insuficiência Cardíaca/metabolismo , Masculino , Contração Miocárdica/efeitos dos fármacos , Ratos , Ratos Endogâmicos WKY , Sistemas do Segundo Mensageiro/efeitos dos fármacos
13.
J Cell Sci ; 123(Pt 1): 107-17, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20016071

RESUMO

Ca(2+)-sensitive adenylyl cyclases (ACs) orchestrate dynamic interplay between Ca(2+) and cAMP that is a crucial feature of cellular homeostasis. Significantly, these ACs are highly selective for capacitative Ca(2+) entry (CCE) over other modes of Ca(2+) increase. To directly address the possibility that these ACs reside in discrete Ca(2+) microdomains, we tethered a Ca(2+) sensor, GCaMP2, to the N-terminus of Ca(2+)-stimulated AC8. GCaMP2-AC8 measurements were compared with global, plasma membrane (PM)-targeted or Ca(2+)-insensitive AC2-targeted GCaMP2. In intact cells, GCaMP2-AC8 responded rapidly to CCE, but was largely unresponsive to other types of Ca(2+) rise. The global GCaMP2, PM-targeted GCaMP2 and GCaMP2-AC2 sensors reported large Ca(2+) fluxes during Ca(2+) mobilization and non-specific Ca(2+) entry, but were less responsive to CCE than GCaMP2-AC8. Our data reveal that different AC isoforms localize to distinct Ca(2+)-microdomains within the plasma membrane. AC2, which is regulated via protein kinase C, resides in a microdomain that is exposed to a range of widespread Ca(2+) signals seen throughout the cytosol. By contrast, a unique Ca(2+) microdomain surrounds AC8 that promotes selectivity for Ca(2+) signals arising from CCE, and optimizes CCE-mediated cAMP synthesis. This direct demonstration of discrete compartmentalized Ca(2+) signals associated with specific signalling proteins provides a remarkable insight into the functional organization of signalling microdomains.


Assuntos
Adenilil Ciclases/metabolismo , Cálcio/metabolismo , Microdomínios da Membrana/metabolismo , Sondas Moleculares/metabolismo , Isoformas de Proteínas/metabolismo , Adenilil Ciclases/genética , Sinalização do Cálcio , Linhagem Celular , AMP Cíclico/metabolismo , Citosol , Humanos , Sondas Moleculares/genética , Ligação Proteica , Engenharia de Proteínas , Isoformas de Proteínas/genética , Transporte Proteico/genética
14.
J Cell Sci ; 123(Pt 1): 95-106, 2010 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-20016070

RESUMO

Microdomains have been proposed to explain specificity in the myriad of possible cellular targets of cAMP. Local differences in cAMP levels can be generated by phosphodiesterases, which control the diffusion of cAMP. Here, we address the possibility that adenylyl cyclases, the source of cAMP, can be primary architects of such microdomains. Distinctly regulated adenylyl cyclases often contribute to total cAMP levels in endogenous cellular settings, making it virtually impossible to determine the contribution of a specific isoform. To investigate cAMP dynamics with high precision at the single-isoform level, we developed a targeted version of Epac2-camps, a cAMP sensor, in which the sensor was tagged to a catalytically inactive version of the Ca(2+)-stimulable adenylyl cyclase 8 (AC8). This sensor, and less stringently targeted versions of Epac2-camps, revealed opposite regulation of cAMP synthesis in response to Ca(2+) in GH(3)B(6) pituitary cells. Ca(2+) release triggered by thyrotropin-releasing hormone stimulated the minor endogenous AC8 species. cAMP levels were decreased by inhibition of AC5 and AC6, and simultaneous activation of phosphodiesterases, in different compartments of the same cell. These findings demonstrate the existence of distinct adenylyl-cyclase-centered cAMP microdomains in live cells and open the door to their molecular micro-dissection.


Assuntos
Adenilil Ciclases/metabolismo , AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Sondas Moleculares/metabolismo , Isoformas de Proteínas/metabolismo , Adenilil Ciclases/química , Adenilil Ciclases/genética , Sinalização do Cálcio , Domínio Catalítico/genética , Linhagem Celular , Fatores de Troca do Nucleotídeo Guanina/química , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Microdomínios da Membrana , Microscopia de Fluorescência , Sondas Moleculares/genética , Diester Fosfórico Hidrolases/metabolismo , Adeno-Hipófise/citologia , Engenharia de Proteínas , Hormônio Liberador de Tireotropina/metabolismo
15.
Biochem Soc Trans ; 40(1): 179-83, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22260686

RESUMO

The development of FRET (fluorescence resonance energy transfer)-based sensors for measuring cAMP has opened the door to sophisticated insights into single-cell cAMP dynamics. cAMP can be measured in distinct cell populations and even in distinct microdomains within cells. However, there is still only limited information on cAMP dynamics in excitable cells, particularly as a function of the activity of voltage-gated Ca2+ channels. A major reason for this is the pH shifts that can occur in excitable cells and their effects on fluorescent proteins.


Assuntos
AMP Cíclico/metabolismo , Transferência Ressonante de Energia de Fluorescência , Sistemas do Segundo Mensageiro , Animais , Proteínas de Fluorescência Verde/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/metabolismo , Análise de Célula Única/métodos
16.
J Biol Chem ; 285(26): 20328-42, 2010 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-20410303

RESUMO

Protein kinase A anchoring proteins (AKAPs) provide the backbone for targeted multimolecular signaling complexes that serve to localize the activities of cAMP. Evidence is accumulating of direct associations between AKAPs and specific adenylyl cyclase (AC) isoforms to facilitate the actions of protein kinase A on cAMP production. It happens that some of the AC isoforms (AC1 and AC5/6) that bind specific AKAPs are regulated by submicromolar shifts in intracellular Ca(2+). However, whether AKAPs play a role in the control of AC activity by Ca(2+) is unknown. Using a combination of co-immunoprecipitation and high resolution live cell imaging techniques, we reveal an association of the Ca(2+)-stimulable AC8 with AKAP79/150 that limits the sensitivity of AC8 to intracellular Ca(2+) events. This functional interaction between AKAP79/150 and AC8 was observed in HEK293 cells overexpressing the two signaling molecules. Similar findings were made in pancreatic insulin-secreting cells and cultured hippocampal neurons that endogenously express AKAP79/150 and AC8, which suggests important physiological implications for this protein-protein interaction with respect to Ca(2+)-stimulated cAMP production.


Assuntos
Proteínas de Ancoragem à Quinase A/metabolismo , Adenilil Ciclases/metabolismo , Cálcio/metabolismo , AMP Cíclico/biossíntese , Células Secretoras de Insulina/metabolismo , Neurônios/metabolismo , Proteínas de Ancoragem à Quinase A/genética , Adenilil Ciclases/genética , Animais , Animais Recém-Nascidos , Western Blotting , Cálcio/farmacologia , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Ativação Enzimática/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Humanos , Imunoprecipitação , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Neurônios/citologia , Ligação Proteica , Interferência de RNA , Ratos , Ratos Wistar , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Transfecção
18.
Am J Physiol Lung Cell Mol Physiol ; 301(1): L117-24, 2011 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-21478251

RESUMO

Transmembrane adenylyl cyclase (AC) generates a cAMP pool within the subplasma membrane compartment that strengthens the endothelial cell barrier. This cAMP signal is steered toward effectors that promote junctional integrity and is inactivated before it accesses microtubules, where the cAMP signal causes phosphorylation of tau, leading to microtubule disassembly and barrier disruption. During infection, Pseudomonas aeruginosa uses a type III secretion system to inject a soluble AC, ExoY, into the cytosol of pulmonary microvascular endothelial cells. ExoY generates a cAMP signal that disrupts the endothelial cell barrier. We tested the hypothesis that this ExoY-dependent cAMP signal causes phosphorylation of tau, without inducing phosphorylation of membrane effectors that strengthen endothelial barrier function. To approach this hypothesis, we first discerned the membrane compartment in which endogenous transmembrane AC6 resides. AC6 was resolved in caveolin-rich lipid raft fractions with calcium channel proteins and the cell adhesion molecules N-cadherin, E-cadherin, and activated leukocyte adhesion molecule. VE-cadherin was excluded from the caveolin-rich fractions and was detected in the bulk plasma membrane fractions. The actin binding protein, filamin A, was detected in all membrane fractions. Isoproterenol activation of ACs promoted filamin phosphorylation, whereas thrombin inhibition of AC6 reduced filamin phosphorylation within the membrane fraction. In contrast, ExoY produced a cAMP signal that did not cause filamin phosphorylation yet induced tau phosphorylation. Hence, our data indicate that cAMP signals are strictly compartmentalized; whereas cAMP emanating from transmembrane ACs activates barrier-enhancing targets, such as filamin, cAMP emanating from soluble ACs activates barrier-disrupting targets, such as tau.


Assuntos
Adenilil Ciclases/metabolismo , Membrana Celular/enzimologia , Proteínas Contráteis/metabolismo , Citosol/enzimologia , Proteínas dos Microfilamentos/metabolismo , Animais , Proteínas de Bactérias/farmacologia , Canais de Cálcio/metabolismo , Caveolina 1/metabolismo , Moléculas de Adesão Celular , Compartimento Celular/efeitos dos fármacos , Membrana Celular/efeitos dos fármacos , AMP Cíclico/metabolismo , Citosol/efeitos dos fármacos , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/enzimologia , Ativação Enzimática/efeitos dos fármacos , Filaminas , Glucosiltransferases/farmacologia , Isoproterenol/farmacologia , Pulmão/irrigação sanguínea , Microdomínios da Membrana/efeitos dos fármacos , Microdomínios da Membrana/enzimologia , Microvasos/citologia , Modelos Biológicos , Proteína ORAI1 , Fosforilação/efeitos dos fármacos , Ratos , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/enzimologia , Canais de Cátion TRPC/metabolismo , Trombina/farmacologia , Proteínas tau/metabolismo
19.
Nat Methods ; 5(1): 29-36, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18165805

RESUMO

Spatial and temporal compartmentalization of cAMP (and its target proteins) is central to the ability of this second messenger to govern cellular activity over timescales ranging from milliseconds to several hours. Recent years have witnessed a burgeoning of methodologies that enable researchers to directly monitor rapid subcellular cAMP dynamics, which are unobtainable by traditional cAMP assays. In this review, we examine cAMP biosensors that are currently available for measuring cAMP at the single-cell level, compare their various operating principles and discuss their applications.


Assuntos
Bioensaio/métodos , Técnicas Biossensoriais/métodos , Cálcio/metabolismo , Fenômenos Fisiológicos Celulares , AMP Cíclico/metabolismo , Perfilação da Expressão Gênica/métodos , Microscopia de Fluorescência/métodos
20.
Function (Oxf) ; 2(5): zqab036, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34458850

RESUMO

To ensure specificity of response, eukaryotic cells often restrict signalling molecules to sub-cellular regions. The Ca2+ nanodomain is a spatially confined signal that arises near open Ca2+ channels. Ca2+ nanodomains near store-operated Orai1 channels stimulate the protein phosphatase calcineurin, which activates the transcription factor NFAT1, and both enzyme and target are initially attached to the plasma membrane through the scaffolding protein AKAP79. Here, we show that a cAMP signalling nexus also forms adjacent to Orai1. Protein kinase A and phosphodiesterase 4, an enzyme that rapidly breaks down cAMP, both associate with AKAP79 and realign close to Orai1 after stimulation. PCR and mass spectrometry failed to show expression of Ca2+-activated adenylyl cyclase 8 in HEK293 cells, whereas the enzyme was observed in neuronal cell lines. FRET and biochemical measurements of bulk cAMP and protein kinase A activity consistently failed to show an increase in adenylyl cyclase activity following even a large rise in cytosolic Ca2+. Furthermore, expression of AKAP79-CUTie, a cAMP FRET sensor tethered to AKAP79, did not report a rise in cAMP after stimulation, despite AKAP79 association with Orai1. Hence, HEK293 cells do not express functional active Ca2+-activated adenylyl cyclases including adenylyl cyclase 8. Our results show that two ancient second messengers are independently generated in nanodomains close to Orai1 Ca2+ channels.


Assuntos
Proteínas Quinases Dependentes de AMP Cíclico , AMP Cíclico , Humanos , Membrana Celular/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/genética , Células HEK293 , Proteína ORAI1/genética , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA