Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Nucleic Acids Res ; 52(D1): D1548-D1555, 2024 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-38055832

RESUMO

The Planteome project (https://planteome.org/) provides a suite of reference and crop-specific ontologies and an integrated knowledgebase of plant genomics data. The plant genomics data in the Planteome has been obtained through manual and automated curation and sourced from more than 40 partner databases and resources. Here, we report on updates to the Planteome reference ontologies, namely, the Plant Ontology (PO), Trait Ontology (TO), the Plant Experimental Conditions Ontology (PECO), and integration of species/crop-specific vocabularies from our partners, the Crop Ontology (CO) into the TO ontology graph. Currently, 11 CO vocabularies are integrated into the Planteome with the addition of yam, sorghum, and potato since 2018. In addition, the size of the annotation database has increased by 34%, and the number of bioentities (genes, proteins, etc.) from 125 plant taxa has increased by 72%. We developed new tools to facilitate user requests and improvements to the CO vocabularies, and to allow fast searching and browsing of PO terms and definitions. These enhancements and future changes to automate the TO-CO mappings and knowledge discovery tools ensure that the Planteome will continue to be a valuable resource for plant biology.


Assuntos
Biologia Computacional , Bases de Dados Genéticas , Genoma de Planta , Plantas , Bases de Dados Genéticas/tendências , Plantas/genética , Biologia Computacional/métodos , Internet
2.
Nucleic Acids Res ; 46(D1): D1168-D1180, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-29186578

RESUMO

The Planteome project (http://www.planteome.org) provides a suite of reference and species-specific ontologies for plants and annotations to genes and phenotypes. Ontologies serve as common standards for semantic integration of a large and growing corpus of plant genomics, phenomics and genetics data. The reference ontologies include the Plant Ontology, Plant Trait Ontology and the Plant Experimental Conditions Ontology developed by the Planteome project, along with the Gene Ontology, Chemical Entities of Biological Interest, Phenotype and Attribute Ontology, and others. The project also provides access to species-specific Crop Ontologies developed by various plant breeding and research communities from around the world. We provide integrated data on plant traits, phenotypes, and gene function and expression from 95 plant taxa, annotated with reference ontology terms. The Planteome project is developing a plant gene annotation platform; Planteome Noctua, to facilitate community engagement. All the Planteome ontologies are publicly available and are maintained at the Planteome GitHub site (https://github.com/Planteome) for sharing, tracking revisions and new requests. The annotated data are freely accessible from the ontology browser (http://browser.planteome.org/amigo) and our data repository.


Assuntos
Bases de Dados Genéticas , Genoma de Planta , Plantas/genética , Produtos Agrícolas/genética , Curadoria de Dados , Regulação da Expressão Gênica de Plantas , Ontologia Genética , Anotação de Sequência Molecular , Fenótipo , Software , Interface Usuário-Computador
3.
PLoS Biol ; 13(1): e1002033, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25562316

RESUMO

Despite a large and multifaceted effort to understand the vast landscape of phenotypic data, their current form inhibits productive data analysis. The lack of a community-wide, consensus-based, human- and machine-interpretable language for describing phenotypes and their genomic and environmental contexts is perhaps the most pressing scientific bottleneck to integration across many key fields in biology, including genomics, systems biology, development, medicine, evolution, ecology, and systematics. Here we survey the current phenomics landscape, including data resources and handling, and the progress that has been made to accurately capture relevant data descriptions for phenotypes. We present an example of the kind of integration across domains that computable phenotypes would enable, and we call upon the broader biology community, publishers, and relevant funding agencies to support efforts to surmount today's data barriers and facilitate analytical reproducibility.


Assuntos
Estudos de Associação Genética , Animais , Biologia Computacional , Curadoria de Dados , Bases de Dados Factuais/normas , Interação Gene-Ambiente , Genômica , Humanos , Fenótipo , Padrões de Referência , Reprodutibilidade dos Testes , Terminologia como Assunto
4.
Plant J ; 84(1): 216-27, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26252423

RESUMO

Barley (Hordeum vulgare L.) possesses a large and highly repetitive genome of 5.1 Gb that has hindered the development of a complete sequence. In 2012, the International Barley Sequencing Consortium released a resource integrating whole-genome shotgun sequences with a physical and genetic framework. However, because only 6278 bacterial artificial chromosome (BACs) in the physical map were sequenced, fine structure was limited. To gain access to the gene-containing portion of the barley genome at high resolution, we identified and sequenced 15 622 BACs representing the minimal tiling path of 72 052 physical-mapped gene-bearing BACs. This generated ~1.7 Gb of genomic sequence containing an estimated 2/3 of all Morex barley genes. Exploration of these sequenced BACs revealed that although distal ends of chromosomes contain most of the gene-enriched BACs and are characterized by high recombination rates, there are also gene-dense regions with suppressed recombination. We made use of published map-anchored sequence data from Aegilops tauschii to develop a synteny viewer between barley and the ancestor of the wheat D-genome. Except for some notable inversions, there is a high level of collinearity between the two species. The software HarvEST:Barley provides facile access to BAC sequences and their annotations, along with the barley-Ae. tauschii synteny viewer. These BAC sequences constitute a resource to improve the efficiency of marker development, map-based cloning, and comparative genomics in barley and related crops. Additional knowledge about regions of the barley genome that are gene-dense but low recombination is particularly relevant.


Assuntos
Cromossomos Artificiais Bacterianos/genética , Genoma de Planta/genética , Hordeum/genética , Dados de Sequência Molecular
5.
Plant Cell Physiol ; 54(2): e1, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23220694

RESUMO

The Plant Ontology (PO; http://www.plantontology.org/) is a publicly available, collaborative effort to develop and maintain a controlled, structured vocabulary ('ontology') of terms to describe plant anatomy, morphology and the stages of plant development. The goals of the PO are to link (annotate) gene expression and phenotype data to plant structures and stages of plant development, using the data model adopted by the Gene Ontology. From its original design covering only rice, maize and Arabidopsis, the scope of the PO has been expanded to include all green plants. The PO was the first multispecies anatomy ontology developed for the annotation of genes and phenotypes. Also, to our knowledge, it was one of the first biological ontologies that provides translations (via synonyms) in non-English languages such as Japanese and Spanish. As of Release #18 (July 2012), there are about 2.2 million annotations linking PO terms to >110,000 unique data objects representing genes or gene models, proteins, RNAs, germplasm and quantitative trait loci (QTLs) from 22 plant species. In this paper, we focus on the plant anatomical entity branch of the PO, describing the organizing principles, resources available to users and examples of how the PO is integrated into other plant genomics databases and web portals. We also provide two examples of comparative analyses, demonstrating how the ontology structure and PO-annotated data can be used to discover the patterns of expression of the LEAFY (LFY) and terpene synthase (TPS) gene homologs.


Assuntos
Genoma de Planta , Genômica/métodos , Plantas/anatomia & histologia , Plantas/genética , Software , Alquil e Aril Transferases/genética , Bases de Dados Genéticas , Flores/genética , Internet , Anotação de Sequência Molecular , Família Multigênica , Fenótipo , Folhas de Planta/anatomia & histologia , Proteínas de Plantas/genética
6.
Front Artif Intell ; 6: 1201002, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37384147

RESUMO

Introduction: Climate change is already affecting ecosystems around the world and forcing us to adapt to meet societal needs. The speed with which climate change is progressing necessitates a massive scaling up of the number of species with understood genotype-environment-phenotype (G×E×P) dynamics in order to increase ecosystem and agriculture resilience. An important part of predicting phenotype is understanding the complex gene regulatory networks present in organisms. Previous work has demonstrated that knowledge about one species can be applied to another using ontologically-supported knowledge bases that exploit homologous structures and homologous genes. These types of structures that can apply knowledge about one species to another have the potential to enable the massive scaling up that is needed through in silico experimentation. Methods: We developed one such structure, a knowledge graph (KG) using information from Planteome and the EMBL-EBI Expression Atlas that connects gene expression, molecular interactions, functions, and pathways to homology-based gene annotations. Our preliminary analysis uses data from gene expression studies in Arabidopsis thaliana and Populus trichocarpa plants exposed to drought conditions. Results: A graph query identified 16 pairs of homologous genes in these two taxa, some of which show opposite patterns of gene expression in response to drought. As expected, analysis of the upstream cis-regulatory region of these genes revealed that homologs with similar expression behavior had conserved cis-regulatory regions and potential interaction with similar trans-elements, unlike homologs that changed their expression in opposite ways. Discussion: This suggests that even though the homologous pairs share common ancestry and functional roles, predicting expression and phenotype through homology inference needs careful consideration of integrating cis and trans-regulatory components in the curated and inferred knowledge graph.

7.
Database (Oxford) ; 20232023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37971715

RESUMO

Over the last couple of decades, there has been a rapid growth in the number and scope of agricultural genetics, genomics and breeding databases and resources. The AgBioData Consortium (https://www.agbiodata.org/) currently represents 44 databases and resources (https://www.agbiodata.org/databases) covering model or crop plant and animal GGB data, ontologies, pathways, genetic variation and breeding platforms (referred to as 'databases' throughout). One of the goals of the Consortium is to facilitate FAIR (Findable, Accessible, Interoperable, and Reusable) data management and the integration of datasets which requires data sharing, along with structured vocabularies and/or ontologies. Two AgBioData working groups, focused on Data Sharing and Ontologies, respectively, conducted a Consortium-wide survey to assess the current status and future needs of the members in those areas. A total of 33 researchers responded to the survey, representing 37 databases. Results suggest that data-sharing practices by AgBioData databases are in a fairly healthy state, but it is not clear whether this is true for all metadata and data types across all databases; and that, ontology use has not substantially changed since a similar survey was conducted in 2017. Based on our evaluation of the survey results, we recommend (i) providing training for database personnel in a specific data-sharing techniques, as well as in ontology use; (ii) further study on what metadata is shared, and how well it is shared among databases; (iii) promoting an understanding of data sharing and ontologies in the stakeholder community; (iv) improving data sharing and ontologies for specific phenotypic data types and formats; and (v) lowering specific barriers to data sharing and ontology use, by identifying sustainability solutions, and the identification, promotion, or development of data standards. Combined, these improvements are likely to help AgBioData databases increase development efforts towards improved ontology use, and data sharing via programmatic means. Database URL  https://www.agbiodata.org/databases.


Assuntos
Gerenciamento de Dados , Melhoramento Vegetal , Animais , Genômica/métodos , Bases de Dados Factuais , Disseminação de Informação
8.
Am J Bot ; 99(8): 1263-75, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22847540

RESUMO

PREMISE OF THE STUDY: Bio-ontologies are essential tools for accessing and analyzing the rapidly growing pool of plant genomic and phenomic data. Ontologies provide structured vocabularies to support consistent aggregation of data and a semantic framework for automated analyses and reasoning. They are a key component of the semantic web. METHODS: This paper provides background on what bio-ontologies are, why they are relevant to botany, and the principles of ontology development. It includes an overview of ontologies and related resources that are relevant to plant science, with a detailed description of the Plant Ontology (PO). We discuss the challenges of building an ontology that covers all green plants (Viridiplantae). KEY RESULTS: Ontologies can advance plant science in four keys areas: (1) comparative genetics, genomics, phenomics, and development; (2) taxonomy and systematics; (3) semantic applications; and (4) education. CONCLUSIONS: Bio-ontologies offer a flexible framework for comparative plant biology, based on common botanical understanding. As genomic and phenomic data become available for more species, we anticipate that the annotation of data with ontology terms will become less centralized, while at the same time, the need for cross-species queries will become more common, causing more researchers in plant science to turn to ontologies.


Assuntos
Biologia Computacional/métodos , Plantas/genética , Botânica/métodos , Interpretação Estatística de Dados , Sistemas de Gerenciamento de Base de Dados , Bases de Dados Factuais , Genoma de Planta/genética , Genômica , Anotação de Sequência Molecular , Fenótipo , Plantas/anatomia & histologia , Plantas/classificação , Semântica , Terminologia como Assunto , Vocabulário Controlado
9.
Database (Oxford) ; 20222022 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-35616118

RESUMO

As one of the US Department of Agriculture-Agricultural Research Service flagship databases, GrainGenes (https://wheat.pw.usda.gov) serves the data and community needs of globally distributed small grains researchers for the genetic improvement of the Triticeae family and Avena species that include wheat, barley, rye and oat. GrainGenes accomplishes its mission by continually enriching its cross-linked data content following the findable, accessible, interoperable and reusable principles, enhancing and maintaining an intuitive web interface, creating tools to enable easy data access and establishing data connections within and between GrainGenes and other biological databases to facilitate knowledge discovery. GrainGenes operates within the biological database community, collaborates with curators and genome sequencing groups and contributes to the AgBioData Consortium and the International Wheat Initiative through the Wheat Information System (WheatIS). Interactive and linked content is paramount for successful biological databases and GrainGenes now has 2917 manually curated gene records, including 289 genes and 254 alleles from the Wheat Gene Catalogue (WGC). There are >4.8 million gene models in 51 genome browser assemblies, 6273 quantitative trait loci and >1.4 million genetic loci on 4756 genetic and physical maps contained within 443 mapping sets, complete with standardized metadata. Most notably, 50 new genome browsers that include outputs from the Wheat and Barley PanGenome projects have been created. We provide an example of an expression quantitative trait loci track on the International Wheat Genome Sequencing Consortium Chinese Spring wheat browser to demonstrate how genome browser tracks can be adapted for different data types. To help users benefit more from its data, GrainGenes created four tutorials available on YouTube. GrainGenes is executing its vision of service by continuously responding to the needs of the global small grains community by creating a centralized, long-term, interconnected data repository. Database URL:https://wheat.pw.usda.gov.


Assuntos
Genoma de Planta , Hordeum , Avena/genética , Mapeamento Cromossômico , Bases de Dados Genéticas , Genoma de Planta/genética , Genômica , Hordeum/genética , Locos de Características Quantitativas , Triticum/genética
10.
Patterns (N Y) ; 1(7): 100105, 2020 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-33205138

RESUMO

Heterogeneous and multidisciplinary data generated by research on sustainable global agriculture and agrifood systems requires quality data labeling or annotation in order to be interoperable. As recommended by the FAIR principles, data, labels, and metadata must use controlled vocabularies and ontologies that are popular in the knowledge domain and commonly used by the community. Despite the existence of robust ontologies in the Life Sciences, there is currently no comprehensive full set of ontologies recommended for data annotation across agricultural research disciplines. In this paper, we discuss the added value of the Ontologies Community of Practice (CoP) of the CGIAR Platform for Big Data in Agriculture for harnessing relevant expertise in ontology development and identifying innovative solutions that support quality data annotation. The Ontologies CoP stimulates knowledge sharing among stakeholders, such as researchers, data managers, domain experts, experts in ontology design, and platform development teams.

11.
Front Plant Sci ; 10: 631, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31214208

RESUMO

The Plant Ontology (PO) is a community resource consisting of standardized terms, definitions, and logical relations describing plant structures and development stages, augmented by a large database of annotations from genomic and phenomic studies. This paper describes the structure of the ontology and the design principles we used in constructing PO terms for plant development stages. It also provides details of the methodology and rationale behind our revision and expansion of the PO to cover development stages for all plants, particularly the land plants (bryophytes through angiosperms). As a case study to illustrate the general approach, we examine variation in gene expression across embryo development stages in Arabidopsis and maize, demonstrating how the PO can be used to compare patterns of expression across stages and in developmentally different species. Although many genes appear to be active throughout embryo development, we identified a small set of uniquely expressed genes for each stage of embryo development and also between the two species. Evaluating the different sets of genes expressed during embryo development in Arabidopsis or maize may inform future studies of the divergent developmental pathways observed in monocotyledonous versus dicotyledonous species. The PO and its annotation database (http://www.planteome.org) make plant data for any species more discoverable and accessible through common formats, thus providing support for applications in plant pathology, image analysis, and comparative development and evolution.

12.
Database (Oxford) ; 20182018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30239679

RESUMO

The future of agricultural research depends on data. The sheer volume of agricultural biological data being produced today makes excellent data management essential. Governmental agencies, publishers and science funders require data management plans for publicly funded research. Furthermore, the value of data increases exponentially when they are properly stored, described, integrated and shared, so that they can be easily utilized in future analyses. AgBioData (https://www.agbiodata.org) is a consortium of people working at agricultural biological databases, data archives and knowledgbases who strive to identify common issues in database development, curation and management, with the goal of creating database products that are more Findable, Accessible, Interoperable and Reusable. We strive to promote authentic, detailed, accurate and explicit communication between all parties involved in scientific data. As a step toward this goal, we present the current state of biocuration, ontologies, metadata and persistence, database platforms, programmatic (machine) access to data, communication and sustainability with regard to data curation. Each section describes challenges and opportunities for these topics, along with recommendations and best practices.


Assuntos
Agricultura , Bases de Dados Genéticas , Genômica , Cruzamento , Ontologia Genética , Metadados , Inquéritos e Questionários
13.
Plant Biotechnol J ; 5(3): 381-8, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17359497

RESUMO

The expression level of bar, which encodes phosphinothricin acetyltransferase (PAT), was correlated with the inviability of barley hybrids between 20 Golden Promise-derived transgenic lines (Ds-bar lines) and a specialized genetic marker stock, Oregon Wolfe Barley Dominant (OWBD). Each Ds-bar line was homozygous for a modified maize Ds element that encoded bar and that had been delivered via transposition to a unique location. All Ds-bar lines were viable and morphologically similar. Only four of the 20 hybrid populations were viable. The remaining populations died prior to producing seed. Phenotypic, enzyme-linked immunosorbent assay and quantitative reverse transcriptase-polymerase chain reaction analyses of these lines, and of lines from unrelated transformation events that also expressed bar, showed that viability was negatively correlated with bar expression. Analysis of crosses of a high-bar-expressing line with the OWB mapping population showed that the sensitivity of OWBD to PAT segregated as a single locus on chromosome 6HL. No sensitivity to PAT could be detected in several other lines and cultivars. OWBD has been shown to be genetically divergent from other germplasm groups within cultivated barley; therefore, the observed sensitivity may be peculiar to OWBD and thus would not impact generally on the utility of bar as a selectable marker or source of herbicide resistance in barley. Nevertheless, these results demonstrate the extent of allelic variability present in Hordeum vulgare, and suggest an additional variable for consideration when devising protocols for the transformation of Hordeum cultivars or landraces that are not known to be tolerant to PAT.


Assuntos
Acetiltransferases/genética , Hordeum/genética , Plantas Geneticamente Modificadas/genética , Acetiltransferases/metabolismo , Quimera/genética , Quimera/crescimento & desenvolvimento , Quimera/metabolismo , Mapeamento Cromossômico , Resistência a Medicamentos/genética , Marcadores Genéticos , Hordeum/crescimento & desenvolvimento , Hordeum/metabolismo , Fenótipo , Plantas Geneticamente Modificadas/enzimologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Transformação Genética
14.
F1000Res ; 6: 1843, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29333241

RESUMO

In this article, we present a joint effort of the wheat research community, along with data and ontology experts, to develop wheat data interoperability guidelines. Interoperability is the ability of two or more systems and devices to cooperate and exchange data, and interpret that shared information. Interoperability is a growing concern to the wheat scientific community, and agriculture in general, as the need to interpret the deluge of data obtained through high-throughput technologies grows. Agreeing on common data formats, metadata, and vocabulary standards is an important step to obtain the required data interoperability level in order to add value by encouraging data sharing, and subsequently facilitate the extraction of new information from existing and new datasets. During a period of more than 18 months, the RDA Wheat Data Interoperability Working Group (WDI-WG) surveyed the wheat research community about the use of data standards, then discussed and selected a set of recommendations based on consensual criteria. The recommendations promote standards for data types identified by the wheat research community as the most important for the coming years: nucleotide sequence variants, genome annotations, phenotypes, germplasm data, gene expression experiments, and physical maps. For each of these data types, the guidelines recommend best practices in terms of use of data formats, metadata standards and ontologies. In addition to the best practices, the guidelines provide examples of tools and implementations that are likely to facilitate the adoption of the recommendations. To maximize the adoption of the recommendations, the WDI-WG used a community-driven approach that involved the wheat research community from the start, took into account their needs and practices, and provided them with a framework to keep the recommendations up to date. We also report this approach's potential to be generalizable to other (agricultural) domains.

15.
Methods Mol Biol ; 1374: 89-114, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26519402

RESUMO

The use of controlled, structured vocabularies (ontologies) has become a critical tool for scientists in the post-genomic era of massive datasets. Adoption and integration of common vocabularies and annotation practices enables cross-species comparative analyses and increases data sharing and reusability. The Plant Ontology (PO; http://www.plantontology.org/ ) describes plant anatomy, morphology, and the stages of plant development, and offers a database of plant genomics annotations associated to the PO terms. The scope of the PO has grown from its original design covering only rice, maize, and Arabidopsis, and now includes terms to describe all green plants from angiosperms to green algae.This chapter introduces how the PO and other related ontologies are constructed and organized, including languages and software used for ontology development, and provides an overview of the key features. Detailed instructions illustrate how to search and browse the PO database and access the associated annotation data. Users are encouraged to provide input on the ontology through the online term request form and contribute datasets for integration in the PO database.


Assuntos
Ontologias Biológicas , Biologia Computacional/métodos , Genômica/métodos , Desenvolvimento Vegetal , Fenômenos Fisiológicos Vegetais , Plantas/anatomia & histologia , Bases de Dados Genéticas , Navegador
16.
Artigo em Inglês | MEDLINE | ID: mdl-27589961

RESUMO

Fully automated text mining (TM) systems promote efficient literature searching, retrieval, and review but are not sufficient to produce ready-to-consume curated documents. These systems are not meant to replace biocurators, but instead to assist them in one or more literature curation steps. To do so, the user interface is an important aspect that needs to be considered for tool adoption. The BioCreative Interactive task (IAT) is a track designed for exploring user-system interactions, promoting development of useful TM tools, and providing a communication channel between the biocuration and the TM communities. In BioCreative V, the IAT track followed a format similar to previous interactive tracks, where the utility and usability of TM tools, as well as the generation of use cases, have been the focal points. The proposed curation tasks are user-centric and formally evaluated by biocurators. In BioCreative V IAT, seven TM systems and 43 biocurators participated. Two levels of user participation were offered to broaden curator involvement and obtain more feedback on usability aspects. The full level participation involved training on the system, curation of a set of documents with and without TM assistance, tracking of time-on-task, and completion of a user survey. The partial level participation was designed to focus on usability aspects of the interface and not the performance per se In this case, biocurators navigated the system by performing pre-designed tasks and then were asked whether they were able to achieve the task and the level of difficulty in completing the task. In this manuscript, we describe the development of the interactive task, from planning to execution and discuss major findings for the systems tested.Database URL: http://www.biocreative.org.


Assuntos
Curadoria de Dados/métodos , Mineração de Dados/métodos , Processamento Eletrônico de Dados/métodos
17.
PeerJ ; 3: e915, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26038713

RESUMO

The seed oil of meadowfoam, a new crop in the Limnanthaceae family, is highly enriched in very long chain fatty acids that are desaturated at the Δ5 position. The unusual oil is desirable for cosmetics and innovative industrial applications and the seed meal remaining after oil extraction contains glucolimnanthin, a methoxylated benzylglucosinolate whose degradation products are herbicidal and anti-microbial. Here we describe EST analysis of the developing seed transcriptome that identified major genes involved in biosynthesis and assembly of the seed oil and in glucosinolate metabolic pathways. mRNAs encoding acyl-CoA Δ5 desaturase were notably abundant. The library was searched for simple sequence repeats (SSRs) and single nucleotide polymorphisms (SNPs). Fifty-four new SSR markers and eight candidate gene markers were developed and combined with previously developed SSRs to construct a new genetic map for Limnanthes alba. Mapped genes in the lipid biosynthetic pathway encode 3-ketoacyl-CoA synthase (KCS), Δ5 desaturase (Δ5DS), lysophosphatidylacyl-acyl transferase (LPAT), and acyl-CoA diacylglycerol acyl transferase (DGAT). Mapped genes in glucosinolate biosynthetic and degradation pathways encode CYP79A, myrosinase (TGG), and epithiospecifier modifier protein (ESM). The resources developed in this study will further the domestication and improvement of meadowfoam as an oilseed crop.

18.
PeerJ ; 3: e1470, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26713234

RESUMO

Understanding the interplay between environmental conditions and phenotypes is a fundamental goal of biology. Unfortunately, data that include observations on phenotype and environment are highly heterogeneous and thus difficult to find and integrate. One approach that is likely to improve the status quo involves the use of ontologies to standardize and link data about phenotypes and environments. Specifying and linking data through ontologies will allow researchers to increase the scope and flexibility of large-scale analyses aided by modern computing methods. Investments in this area would advance diverse fields such as ecology, phylogenetics, and conservation biology. While several biological ontologies are well-developed, using them to link phenotypes and environments is rare because of gaps in ontological coverage and limits to interoperability among ontologies and disciplines. In this manuscript, we present (1) use cases from diverse disciplines to illustrate questions that could be answered more efficiently using a robust linkage between phenotypes and environments, (2) two proof-of-concept analyses that show the value of linking phenotypes to environments in fishes and amphibians, and (3) two proposed example data models for linking phenotypes and environments using the extensible observation ontology (OBOE) and the Biological Collections Ontology (BCO); these provide a starting point for the development of a data model linking phenotypes and environments.

19.
Plant Methods ; 11: 10, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25774204

RESUMO

BACKGROUND: Plant phenotype datasets include many different types of data, formats, and terms from specialized vocabularies. Because these datasets were designed for different audiences, they frequently contain language and details tailored to investigators with different research objectives and backgrounds. Although phenotype comparisons across datasets have long been possible on a small scale, comprehensive queries and analyses that span a broad set of reference species, research disciplines, and knowledge domains continue to be severely limited by the absence of a common semantic framework. RESULTS: We developed a workflow to curate and standardize existing phenotype datasets for six plant species, encompassing both model species and crop plants with established genetic resources. Our effort focused on mutant phenotypes associated with genes of known sequence in Arabidopsis thaliana (L.) Heynh. (Arabidopsis), Zea mays L. subsp. mays (maize), Medicago truncatula Gaertn. (barrel medic or Medicago), Oryza sativa L. (rice), Glycine max (L.) Merr. (soybean), and Solanum lycopersicum L. (tomato). We applied the same ontologies, annotation standards, formats, and best practices across all six species, thereby ensuring that the shared dataset could be used for cross-species querying and semantic similarity analyses. Curated phenotypes were first converted into a common format using taxonomically broad ontologies such as the Plant Ontology, Gene Ontology, and Phenotype and Trait Ontology. We then compared ontology-based phenotypic descriptions with an existing classification system for plant phenotypes and evaluated our semantic similarity dataset for its ability to enhance predictions of gene families, protein functions, and shared metabolic pathways that underlie informative plant phenotypes. CONCLUSIONS: The use of ontologies, annotation standards, shared formats, and best practices for cross-taxon phenotype data analyses represents a novel approach to plant phenomics that enhances the utility of model genetic organisms and can be readily applied to species with fewer genetic resources and less well-characterized genomes. In addition, these tools should enhance future efforts to explore the relationships among phenotypic similarity, gene function, and sequence similarity in plants, and to make genotype-to-phenotype predictions relevant to plant biology, crop improvement, and potentially even human health.

20.
J Biomed Semantics ; 5(1): 50, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25584184

RESUMO

BACKGROUND: Large quantities of digital images are now generated for biological collections, including those developed in projects premised on the high-throughput screening of genome-phenome experiments. These images often carry annotations on taxonomy and observable features, such as anatomical structures and phenotype variations often recorded in response to the environmental factors under which the organisms were sampled. At present, most of these annotations are described in free text, may involve limited use of non-standard vocabularies, and rarely specify precise coordinates of features on the image plane such that a computer vision algorithm could identify, extract and annotate them. Therefore, researchers and curators need a tool that can identify and demarcate features in an image plane and allow their annotation with semantically contextual ontology terms. Such a tool would generate data useful for inter and intra-specific comparison and encourage the integration of curation standards. In the future, quality annotated image segments may provide training data sets for developing machine learning applications for automated image annotation. RESULTS: We developed a novel image segmentation and annotation software application, "Annotation of Image Segments with Ontologies" (AISO). The tool enables researchers and curators to delineate portions of an image into multiple highlighted segments and annotate them with an ontology-based controlled vocabulary. AISO is a freely available Java-based desktop application and runs on multiple platforms. It can be downloaded at http://www.plantontology.org/software/AISO. CONCLUSIONS: AISO enables curators and researchers to annotate digital images with ontology terms in a manner which ensures the future computational value of the annotated images. We foresee uses for such data-encoded image annotations in biological data mining, machine learning, predictive annotation, semantic inference, and comparative analyses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA