Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Cell ; 145(2): 198-211, 2011 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-21496641

RESUMO

Flap endonuclease (FEN1), essential for DNA replication and repair, removes RNA and DNA 5' flaps. FEN1 5' nuclease superfamily members acting in nucleotide excision repair (XPG), mismatch repair (EXO1), and homologous recombination (GEN1) paradoxically incise structurally distinct bubbles, ends, or Holliday junctions, respectively. Here, structural and functional analyses of human FEN1:DNA complexes show structure-specific, sequence-independent recognition for nicked dsDNA bent 100° with unpaired 3' and 5' flaps. Above the active site, a helical cap over a gateway formed by two helices enforces ssDNA threading and specificity for free 5' ends. Crystallographic analyses of product and substrate complexes reveal that dsDNA binding and bending, the ssDNA gateway, and double-base unpairing flanking the scissile phosphate control precise flap incision by the two-metal-ion active site. Superfamily conserved motifs bind and open dsDNA; direct the target region into the helical gateway, permitting only nonbase-paired oligonucleotides active site access; and support a unified understanding of superfamily substrate specificity.


Assuntos
Endonucleases Flap/química , Endonucleases Flap/metabolismo , Sequência de Aminoácidos , Domínio Catalítico , DNA/metabolismo , Análise Mutacional de DNA , Exodesoxirribonucleases/química , Exodesoxirribonucleases/metabolismo , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Alinhamento de Sequência , Especificidade por Substrato
2.
Mol Cell ; 61(4): 535-546, 2016 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-26833090

RESUMO

XPG is a structure-specific endonuclease required for nucleotide excision repair, and incision-defective XPG mutations cause the skin cancer-prone syndrome xeroderma pigmentosum. Truncating mutations instead cause the neurodevelopmental progeroid disorder Cockayne syndrome, but little is known about how XPG loss results in this devastating disease. We identify XPG as a partner of BRCA1 and BRCA2 in maintaining genomic stability through homologous recombination (HRR). XPG depletion causes DNA double-strand breaks, chromosomal abnormalities, cell-cycle delays, defective HRR, inability to overcome replication fork stalling, and replication stress. XPG directly interacts with BRCA2, RAD51, and PALB2, and XPG depletion reduces their chromatin binding and subsequent RAD51 foci formation. Upstream in HRR, XPG interacts directly with BRCA1. Its depletion causes BRCA1 hyper-phosphorylation and persistent chromatin binding. These unexpected findings establish XPG as an HRR protein with important roles in genome stability and suggest how XPG defects produce severe clinical consequences including cancer and accelerated aging.


Assuntos
Proteína BRCA1/metabolismo , Proteína BRCA2/metabolismo , Síndrome de Cockayne/genética , Proteínas de Ligação a DNA/genética , Endonucleases/genética , Instabilidade Genômica , Recombinação Homóloga , Proteínas Nucleares/genética , Fatores de Transcrição/genética , Animais , Linhagem Celular Tumoral , Síndrome de Cockayne/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Proteína do Grupo de Complementação N da Anemia de Fanconi , Genoma Humano , Células HeLa , Humanos , Camundongos , Proteínas Nucleares/metabolismo , Fosforilação , Rad51 Recombinase/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Supressoras de Tumor/metabolismo
3.
Cell ; 133(5): 789-800, 2008 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-18510924

RESUMO

Mutations in XPD helicase, required for nucleotide excision repair (NER) as part of the transcription/repair complex TFIIH, cause three distinct phenotypes: cancer-prone xeroderma pigmentosum (XP), or aging disorders Cockayne syndrome (CS), and trichothiodystrophy (TTD). To clarify molecular differences underlying these diseases, we determined crystal structures of the XPD catalytic core from Sulfolobus acidocaldarius and measured mutant enzyme activities. Substrate-binding grooves separate adjacent Rad51/RecA-like helicase domains (HD1, HD2) and an arch formed by 4FeS and Arch domains. XP mutations map along the HD1 ATP-binding edge and HD2 DNA-binding channel and impair helicase activity essential for NER. XP/CS mutations both impair helicase activity and likely affect HD2 functional movement. TTD mutants lose or retain helicase activity but map to sites in all four domains expected to cause framework defects impacting TFIIH integrity. These results provide a foundation for understanding disease consequences of mutations in XPD and related 4Fe-4S helicases including FancJ.


Assuntos
Proteínas Arqueais/química , Proteínas Arqueais/genética , Sulfolobus acidocaldarius/enzimologia , Proteína Grupo D do Xeroderma Pigmentoso/química , Proteína Grupo D do Xeroderma Pigmentoso/genética , Proteínas Arqueais/metabolismo , Síndrome de Cockayne/genética , Síndrome de Cockayne/metabolismo , Cristalografia por Raios X , DNA Helicases/química , DNA Helicases/genética , DNA Helicases/metabolismo , Reparo do DNA , Proteínas Ferro-Enxofre/química , Proteínas Ferro-Enxofre/genética , Modelos Moleculares , Mutação , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , Homologia Estrutural de Proteína , Síndromes de Tricotiodistrofia/genética , Síndromes de Tricotiodistrofia/metabolismo , Xeroderma Pigmentoso/genética , Xeroderma Pigmentoso/metabolismo , Proteína Grupo D do Xeroderma Pigmentoso/metabolismo
4.
Proc Natl Acad Sci U S A ; 117(25): 14127-14138, 2020 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-32522879

RESUMO

Xeroderma pigmentosum group G (XPG) protein is both a functional partner in multiple DNA damage responses (DDR) and a pathway coordinator and structure-specific endonuclease in nucleotide excision repair (NER). Different mutations in the XPG gene ERCC5 lead to either of two distinct human diseases: Cancer-prone xeroderma pigmentosum (XP-G) or the fatal neurodevelopmental disorder Cockayne syndrome (XP-G/CS). To address the enigmatic structural mechanism for these differing disease phenotypes and for XPG's role in multiple DDRs, here we determined the crystal structure of human XPG catalytic domain (XPGcat), revealing XPG-specific features for its activities and regulation. Furthermore, XPG DNA binding elements conserved with FEN1 superfamily members enable insights on DNA interactions. Notably, all but one of the known pathogenic point mutations map to XPGcat, and both XP-G and XP-G/CS mutations destabilize XPG and reduce its cellular protein levels. Mapping the distinct mutation classes provides structure-based predictions for disease phenotypes: Residues mutated in XP-G are positioned to reduce local stability and NER activity, whereas residues mutated in XP-G/CS have implied long-range structural defects that would likely disrupt stability of the whole protein, and thus interfere with its functional interactions. Combined data from crystallography, biochemistry, small angle X-ray scattering, and electron microscopy unveil an XPG homodimer that binds, unstacks, and sculpts duplex DNA at internal unpaired regions (bubbles) into strongly bent structures, and suggest how XPG complexes may bind both NER bubble junctions and replication forks. Collective results support XPG scaffolding and DNA sculpting functions in multiple DDR processes to maintain genome stability.


Assuntos
Síndrome de Cockayne/genética , Proteínas de Ligação a DNA/química , Endonucleases/química , Proteínas Nucleares/química , Mutação Puntual , Fatores de Transcrição/química , Xeroderma Pigmentoso/genética , Sítios de Ligação , Sequência Conservada , DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Endonucleases/genética , Endonucleases/metabolismo , Estabilidade Enzimática , Humanos , Simulação de Dinâmica Molecular , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fenótipo , Ligação Proteica , Dobramento de Proteína , Multimerização Proteica , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
5.
Nucleic Acids Res ; 46(9): 4515-4532, 2018 05 18.
Artigo em Inglês | MEDLINE | ID: mdl-29522130

RESUMO

Base excision repair (BER), which is initiated by DNA N-glycosylase proteins, is the frontline for repairing potentially mutagenic DNA base damage. The NTHL1 glycosylase, which excises DNA base damage caused by reactive oxygen species, is thought to be a tumor suppressor. However, in addition to NTHL1 loss-of-function mutations, our analysis of cancer genomic datasets reveals that NTHL1 frequently undergoes amplification or upregulation in some cancers. Whether NTHL1 overexpression could contribute to cancer phenotypes has not yet been explored. To address the functional consequences of NTHL1 overexpression, we employed transient overexpression. Both NTHL1 and a catalytically-dead NTHL1 (CATmut) induce DNA damage and genomic instability in non-transformed human bronchial epithelial cells (HBEC) when overexpressed. Strikingly, overexpression of either NTHL1 or CATmut causes replication stress signaling and a decrease in homologous recombination (HR). HBEC cells that overexpress NTHL1 or CATmut acquire the ability to grow in soft agar and exhibit loss of contact inhibition, suggesting that a mechanism independent of NTHL1 catalytic activity contributes to acquisition of cancer-related cellular phenotypes. We provide evidence that NTHL1 interacts with the multifunctional DNA repair protein XPG suggesting that interference with HR is a possible mechanism that contributes to acquisition of early cellular hallmarks of cancer.


Assuntos
Transformação Celular Neoplásica , Desoxirribonuclease (Dímero de Pirimidina)/metabolismo , Instabilidade Genômica , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Linhagem Celular , Linhagem Celular Tumoral , Núcleo Celular/enzimologia , Dano ao DNA , Replicação do DNA , Desoxirribonuclease (Dímero de Pirimidina)/genética , Células Epiteliais/enzimologia , Humanos , Neoplasias Pulmonares/enzimologia , Mutação , Mucosa Respiratória/citologia , Mucosa Respiratória/enzimologia
6.
PLoS Genet ; 10(10): e1004686, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25299392

RESUMO

As part of the Nucleotide Excision Repair (NER) process, the endonuclease XPG is involved in repair of helix-distorting DNA lesions, but the protein has also been implicated in several other DNA repair systems, complicating genotype-phenotype relationship in XPG patients. Defects in XPG can cause either the cancer-prone condition xeroderma pigmentosum (XP) alone, or XP combined with the severe neurodevelopmental disorder Cockayne Syndrome (CS), or the infantile lethal cerebro-oculo-facio-skeletal (COFS) syndrome, characterized by dramatic growth failure, progressive neurodevelopmental abnormalities and greatly reduced life expectancy. Here, we present a novel (conditional) Xpg-/- mouse model which -in a C57BL6/FVB F1 hybrid genetic background- displays many progeroid features, including cessation of growth, loss of subcutaneous fat, kyphosis, osteoporosis, retinal photoreceptor loss, liver aging, extensive neurodegeneration, and a short lifespan of 4-5 months. We show that deletion of XPG specifically in the liver reproduces the progeroid features in the liver, yet abolishes the effect on growth or lifespan. In addition, specific XPG deletion in neurons and glia of the forebrain creates a progressive neurodegenerative phenotype that shows many characteristics of human XPG deficiency. Our findings therefore exclude that both the liver as well as the neurological phenotype are a secondary consequence of derailment in other cell types, organs or tissues (e.g. vascular abnormalities) and support a cell-autonomous origin caused by the DNA repair defect itself. In addition they allow the dissection of the complex aging process in tissue- and cell-type-specific components. Moreover, our data highlight the critical importance of genetic background in mouse aging studies, establish the Xpg-/- mouse as a valid model for the severe form of human XPG patients and segmental accelerated aging, and strengthen the link between DNA damage and aging.


Assuntos
Envelhecimento , Proteínas de Ligação a DNA/deficiência , Deficiências Nutricionais/etiologia , Endonucleases/deficiência , Proteínas Nucleares/deficiência , Fatores de Transcrição/deficiência , Envelhecimento/genética , Animais , Encéfalo/patologia , Caquexia/etiologia , Caquexia/genética , Sistema Nervoso Central/fisiologia , Sistema Nervoso Central/fisiopatologia , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Deficiências Nutricionais/genética , Modelos Animais de Doenças , Endonucleases/genética , Endonucleases/metabolismo , Feminino , Fígado/patologia , Longevidade/genética , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Osteoporose/etiologia , Osteoporose/genética , Gravidez , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
7.
Proc Natl Acad Sci U S A ; 109(22): 8528-33, 2012 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-22586102

RESUMO

Processivity clamps such as proliferating cell nuclear antigen (PCNA) and the checkpoint sliding clamp Rad9/Rad1/Hus1 (9-1-1) act as versatile scaffolds in the coordinated recruitment of proteins involved in DNA replication, cell-cycle control, and DNA repair. Association and handoff of DNA-editing enzymes, such as flap endonuclease 1 (FEN1), with sliding clamps are key processes in biology, which are incompletely understood from a mechanistic point of view. We have used an integrative computational and experimental approach to define the assemblies of FEN1 with double-flap DNA substrates and either proliferating cell nuclear antigen or the checkpoint sliding clamp 9-1-1. Fully atomistic models of these two ternary complexes were developed and refined through extensive molecular dynamics simulations to expose their conformational dynamics. Clustering analysis revealed the most dominant conformations accessible to the complexes. The cluster centroids were subsequently used in conjunction with single-particle electron microscopy data to obtain a 3D EM reconstruction of the human 9-1-1/FEN1/DNA assembly at 18-Å resolution. Comparing the structures of the complexes revealed key differences in the orientation and interactions of FEN1 and double-flap DNA with the two clamps that are consistent with their respective functions in providing inherent flexibility for lagging strand DNA replication or inherent stability for DNA repair.


Assuntos
Proteínas de Ciclo Celular/química , Reparo do DNA , DNA/química , Exonucleases/química , Endonucleases Flap/química , Antígeno Nuclear de Célula em Proliferação/química , Sequência de Aminoácidos , Sequência de Bases , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , DNA/genética , DNA/metabolismo , Eletroforese em Gel de Poliacrilamida , Exonucleases/genética , Exonucleases/metabolismo , Endonucleases Flap/genética , Endonucleases Flap/metabolismo , Humanos , Microscopia Eletrônica , Modelos Moleculares , Simulação de Dinâmica Molecular , Dados de Sequência Molecular , Complexos Multiproteicos/química , Complexos Multiproteicos/metabolismo , Complexos Multiproteicos/ultraestrutura , Conformação de Ácido Nucleico , Antígeno Nuclear de Célula em Proliferação/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína
8.
Methods Mol Biol ; 2701: 149-156, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37574480

RESUMO

R loops (DNA-RNA hybrid) are three-stranded nucleic acid structures that comprise of template DNA strand hybridized with the nascent RNA leaving the displaced non-template strand. Although a programmed R loop formation can serve as powerful regulators of gene expression, these structures can also turn into major sources of genomic instability and contribute to the development of diseases. Therefore, understanding how cells prevent the deleterious consequences of R loops yet allow R loop formation to participate in various physiological processes will help to understand how their homeostasis is maintained. Detection and quantitative measurements of R loops are critical that largely relied on S9.6 antibody. Immunofluorescence methods are frequently used to localize and quantify R loops in the cell but they require specialized tools for analysis and relatively expensive; therefore, they are not always useful for initial assessments of R loop accumulation. Here, we describe an improved slot blot protocol to detect and estimate R loops and show its sensitivity and specificity using the S9.6 antibody. Since specific factors protecting cells from harmful R loop accumulation are expanding, this protocol can be used to determine R loop accumulation in research and clinical settings.


Assuntos
Estruturas R-Loop , RNA , Humanos , Conformação de Ácido Nucleico , RNA/genética , DNA/genética , Anticorpos/química , Instabilidade Genômica
9.
Nat Struct Mol Biol ; 13(5): 414-22, 2006 May.
Artigo em Inglês | MEDLINE | ID: mdl-16622405

RESUMO

WRN is unique among the five human RecQ DNA helicases in having a functional exonuclease domain (WRN-exo) and being defective in the premature aging and cancer-related disorder Werner syndrome. Here, we characterize WRN-exo crystal structures, biochemical activity and participation in DNA end joining. Metal-ion complex structures, active site mutations and activity assays reveal a nuclease mechanism mediated by two metal ions. The DNA end-binding Ku70/80 complex specifically stimulates WRN-exo activity, and structure-based mutational inactivation of WRN-exo alters DNA end joining in human cells. We furthermore establish structural and biochemical similarities of WRN-exo to DnaQ-family replicative proofreading exonucleases, describing WRN-specific adaptations consistent with double-stranded DNA specificity and functionally important conformational changes. These results indicate WRN-exo is a human DnaQ family member and support DnaQ-like proofreading activities stimulated by Ku70/80, with implications for WRN functions in age-related pathologies and maintenance of genomic integrity.


Assuntos
DNA Helicases/química , DNA Helicases/metabolismo , DNA/genética , DNA/metabolismo , Animais , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , DNA Helicases/classificação , DNA Helicases/genética , Exodesoxirribonucleases , Humanos , Metais/química , Metais/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Dobramento de Proteína , RecQ Helicases , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Helicase da Síndrome de Werner
10.
Prog Biophys Mol Biol ; 164: 72-80, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-33753087

RESUMO

Cell survival largely depends on the faithful maintenance of genetic material since genomic DNA is constantly exposed to genotoxicants from both endogenous and exogenous sources. The evolutionarily conserved base excision repair (BER) pathway is critical for maintaining genome integrity by eliminating highly abundant and potentially mutagenic oxidized DNA base lesions. BER is a multistep process, which is initiated with recognition and excision of the DNA base lesion by a DNA glycosylase, followed by DNA end processing, gap filling and finally sealing of the nick. Besides genome maintenance by global BER, DNA glycosylases have been found to play additional roles, including preferential repair of oxidized lesions from transcribed genes, modulation of the immune response, participation in active DNA demethylation and maintenance of the mitochondrial genome. Central to these functions is the DNA glycosylase NEIL2. Its loss results in increased accumulation of oxidized base lesions in the transcribed genome, triggers an immune response and causes early neurodevelopmental defects, thus emphasizing the multitasking capabilities of this repair protein. Here we review the specialized functions of NEIL2 and discuss the consequences of its absence both in vitro and in vivo.


Assuntos
DNA Glicosilases , Animais , DNA , Dano ao DNA , DNA Glicosilases/genética , DNA Glicosilases/metabolismo , Reparo do DNA , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/genética , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Humanos
11.
Environ Mol Mutagen ; 61(6): 635-646, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32267018

RESUMO

Thirdhand cigarette smoke (THS) is a newly described toxin that lingers in the indoor environment long after cigarettes have been extinguished. Emerging results from both cellular and animal model studies suggest that THS is a potential human health hazard. DNA damage derived from THS exposure could have genotoxic consequences that would lead to the development of diseases. However, THS exposure-induced interference with fundamental DNA transactions such as replication and transcription, and the role of DNA repair in ameliorating such effects, remain unexplored. Here, we found that THS exposure increased the percentage of cells in S-phase, suggesting impaired S-phase progression. Key DNA damage response proteins including RPA, ATR, ATM, CHK1, and BRCA1 were activated in lung cells exposed to THS, consistent with replication stress. In addition, THS exposure caused increased 53BP1 foci, indicating DNA double-strand break induction. Consistent with these results, we observed increased micronuclei formation, a marker of genomic instability, in THS-exposed cells. Exposure to THS also caused a significant increase in phosphorylated RNA Polymerase II engaged in transcription elongation, suggesting an increase in transcription-blocking lesions. In agreement with this conclusion, ongoing RNA synthesis was very significantly reduced by THS exposure. Loss of nucleotide excision repair exacerbated the reduction in RNA synthesis, suggesting that bulky DNA adducts formed by THS are blocks to transcription. The adverse impact on both replication and transcription supports genotoxic stress as a result of THS exposure, with important implications for both cancer and other diseases.


Assuntos
Poluição do Ar em Ambientes Fechados/efeitos adversos , Dano ao DNA/efeitos dos fármacos , Poluição por Fumaça de Tabaco/efeitos adversos , Transcrição Gênica/efeitos dos fármacos , Poluentes Atmosféricos/toxicidade , Linhagem Celular , Replicação do DNA/efeitos dos fármacos , Humanos , Testes para Micronúcleos , Pontos de Checagem da Fase S do Ciclo Celular/efeitos dos fármacos
12.
DNA Repair (Amst) ; 7(1): 108-18, 2008 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-17919995

RESUMO

NBS1-deficient cells exhibit pronounced radiosensitivity and defects in chromosome integrity after ionizing radiation (IR) exposure, yet show only a minor defect in DNA double-strand break (DSB) rejoining, leaving an as yet unresolved enigma as to the nature of the radiosensitivity of these cells. To further investigate the relationship between radiosensitivity, DSB repair, and chromosome stability, we have compared cytological and molecular assays of DSB misrejoining and repair in NBS1-defective, wild type, and NBS1-complemented cells after IR damage. Our findings suggest a subtle defect in overall DSB rejoining in NBS1-defective cells and uniquely also reveal reduced ability of NBS1-defective cells to rejoin correct ends of DSBs. In agreement with published results, one of two different NBS1-defective cell lines showed a slight defect in overall rejoining of DSBs compared to its complemented counterpart, whereas another NBS line did not show any difference from wild type cells. Significant defects in the correct rejoining of DSBs compared to their respective controls were observed for both NBS1-defective lines. The defect in DSB rejoining and the increased misrejoining detected at the molecular level were also reflected in higher levels of fragments and translocations, respectively, at the chromosomal level. This work provides both molecular and cytological evidence that NBS1-deficient cells have defects in DSB processing and reveals that these molecular events can be manifest cytologically.


Assuntos
Aberrações Cromossômicas , Dano ao DNA , Reparo do DNA/genética , Síndrome de Quebra de Nijmegen/genética , Linhagem Celular , Reparo do DNA/efeitos da radiação , Citometria de Fluxo , Fase G1 , Humanos , Hibridização in Situ Fluorescente , Raios Infravermelhos , Metáfase , Síndrome de Quebra de Nijmegen/patologia
13.
Mol Cell Biol ; 24(13): 6084-93, 2004 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-15199162

RESUMO

Human positive cofactor 4 (PC4) is a transcriptional coactivator with a highly conserved single-strand DNA (ssDNA) binding domain of unknown function. We identified PC4 as a suppressor of the oxidative mutator phenotype of the Escherichia coli fpg mutY mutant and demonstrate that this suppression requires its ssDNA binding activity. Saccharomyces cerevisiae mutants lacking their PC4 ortholog Sub1 are sensitive to hydrogen peroxide and exhibit spontaneous and peroxide-induced hypermutability. PC4 expression suppresses the peroxide sensitivity of the yeast sub1Delta mutant, suggesting that the human protein has a similar function. A role for yeast and human proteins in DNA repair is suggested by the demonstration that Sub1 acts in a peroxide resistance pathway involving Rad2 and by the physical interaction of PC4 with the human Rad2 homolog XPG. We show that XPG recruits PC4 to a bubble-containing DNA substrate with a resulting displacement of XPG and formation of a PC4-DNA complex. We discuss the possible requirement for PC4 in either global or transcription-coupled repair of oxidative DNA damage to mediate the release of XPG bound to its substrate.


Assuntos
Dano ao DNA , Mutagênese , Proteínas Repressoras/fisiologia , Transativadores/fisiologia , Morte Celular , DNA/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Endodesoxirribonucleases/metabolismo , Endonucleases , Humanos , Proteínas Imediatamente Precoces , Proteínas de Membrana , Proteínas Nucleares , Estresse Oxidativo , Ligação Proteica , Proteínas Repressoras/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Fatores de Transcrição
14.
DNA Repair (Amst) ; 4(10): 1075-87, 2005 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-16046193

RESUMO

Upon prolonged arrest at a cyclobutane pyrimidine dimer (CPD), RNAPII can reverse-translocate, misaligning the 3'-end of the RNA from its active site. Transcription factor SII (TFIIS) is required for cleavage of the disengaged 3'-end and restoration of its correct positioning. We have previously shown in vitro that when RNAPII is arrested at a CPD, TFIIS-induced cleavage results in shortened transcripts. Here, we hypothesized that the pattern of transcript cleavage does not depend solely upon TFIIS itself, but also on some other general transcription factors (GTFs) and/or their effects on RNAPII. To test this hypothesis we compared three in vitro transcription systems which differ with respect to the mode of initiation and the requirement for GTFs. The first consisted of RNAPII and GTFs from rat liver, and required a eukaryotic promoter for initiation. The other two supported transcription in the absence of any GTFs or promoter sequences. In each case, a CPD on the transcribed strand was a complete block for RNAPII translocation. However, the effect of TFIIS on transcript cleavage varied. In the promoter-initiated system, distinct transcripts up to about 20 nucleotides shorter than the uncleaved original one were produced. In the other two systems, the transcripts were degraded nearly completely. Introduction of GTFs partially interfered with cleavage, but failed to reproduce the pattern of transcript lengths observed with the promoter-initiated system. Our results suggest that the extent of TFIIS-mediated transcript cleavage is a well-orchestrated process, depending upon other factors (or their effects on RNAPII), in addition to TFIIS itself.


Assuntos
Dano ao DNA , RNA Polimerase II/metabolismo , Fatores Genéricos de Transcrição/metabolismo , Transcrição Gênica , Fatores de Elongação da Transcrição/metabolismo , Animais , Sequência de Bases , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Conformação Proteica , Dímeros de Pirimidina/química , RNA Polimerase II/química , RNA Mensageiro/química , Ratos , Fatores Genéricos de Transcrição/química , Fatores de Elongação da Transcrição/química
15.
DNA Repair (Amst) ; 4(5): 556-70, 2005 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-15811628

RESUMO

Mutations in the Artemis gene are causative in a subset of human severe combined immunodeficiencies (SCIDs) and Artemis-deficient cells exhibit radiation sensitivity and defective V(D)J recombination, implicating Artemis function in non-homologous end joining (NHEJ). Here we show that Artemis-deficient cells from Athabascan-speaking Native American SCID patients (SCIDA) display significantly elevated sensitivity to ionizing radiation (IR) but only a very subtle defect in DNA double-strand (DSB) break repair in contrast to the severe DSB repair defect of NHEJ-deficient cells. Primary human SCIDA fibroblasts accumulate and exhibit persistent arrest at both the G1/S and G2/M boundaries in response to IR, consistent with the presence of persistent DNA damage. Artemis protein is phosphorylated in a PI3-like kinase-dependent manner after either IR or a number of other DNA damaging treatments including etoposide, but SCIDA cells are not hypersensitive to treatment with etoposide. Inhibitor studies with various DNA damaging agents establish multiple phosphorylation states and suggest multiple kinases function in Artemis phosphorylation. We observe that Artemis phosphorylation occurs rapidly after irradiation like that of histone H2AX. However, unlike H2AX, Artemis de-phosphorylation is uncoupled from overall DNA repair and correlates instead with cell cycle progression to or through mitosis. Our results implicate a direct and non-redundant function of Artemis in the repair of a small subset of DNA double-strand breaks, possibly those with hairpin termini, which may account for the pronounced radiation sensitivity observed in Artemis-deficient cells.


Assuntos
Ciclo Celular , Dano ao DNA , Reparo do DNA , Proteínas Nucleares/deficiência , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Proteínas de Ligação a DNA , Endonucleases , Etoposídeo/farmacologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/efeitos da radiação , Marcação de Genes , Histonas/metabolismo , Humanos , Mitose , Proteínas Nucleares/metabolismo , Fosforilação , Tolerância a Radiação , Radiação Ionizante , Imunodeficiência Combinada Severa/genética , Imunodeficiência Combinada Severa/metabolismo , Pele/efeitos dos fármacos , Pele/efeitos da radiação
16.
Radiat Res ; 163(5): 526-34, 2005 May.
Artigo em Inglês | MEDLINE | ID: mdl-15850414

RESUMO

Misrejoining of DNA double-strand breaks (DSBs) was measured in human primary fibroblasts after exposure to X rays and high-LET particles (helium, nitrogen and iron) in the dose range 10-80 Gy. To measure joining of wrong DNA ends, the integrity of a 3.2-Mbp restriction fragment was analyzed directly after exposure and after 16 h of repair incubation. It was found that the misrejoining frequency for X rays was nonlinearly related to dose, with less probability of misrejoining at low doses than at high doses. The dose dependence for the high-LET particles, on the other hand, was closer to being linear, with misrejoining frequencies higher than for X rays, particularly at the lower doses. These experimental results were simulated with a Monte Carlo approach that includes a cell nucleus model with all 46 chromosomes present, combined with realistic track structure simulations to calculate the geometrical positions of all DSBs induced for each dose. The model assumes that the main determinant for misrejoining probability is the distance between two simultaneously present DSBs. With a Gaussian interaction probability function with distance, it was found that the data for both low- and high-LET radiation could be fitted with an interaction distance (sigma of the Gaussian curve) of 0.25 microm. This is half the distance previously found to best fit chromosomal aberration data in human lymphocytes using the same methods (Holley et al., Radiat. Res. 158, 568-580, 2002). The discrepancy may indicate inadequacies in the chromosome model, for example insufficient chromosomal overlap, but may also be partly due to differences between fibroblasts and lymphocytes.


Assuntos
Dano ao DNA , Doses de Radiação , Células Cultivadas , Aberrações Cromossômicas , Reparo do DNA , Relação Dose-Resposta à Radiação , Fibroblastos/efeitos da radiação , Humanos , Transferência Linear de Energia , Método de Monte Carlo
17.
Radiat Res ; 158(1): 32-42, 2002 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-12071801

RESUMO

Accelerated helium ions with mean energies at the target location of 3-7 MeV were used to simulate alpha-particle radiation from radon daughters. The experimental setup and calibration procedure allowed determination of the helium-ion energy distribution and dose in the nuclei of irradiated cells. Using this system, the induction of DNA double-strand breaks and their spatial distributions along DNA were studied in irradiated human fibroblasts. It was found that the apparent number of double-strand breaks as measured by a standard pulsed-field gel assay (FAR assay) decreased with increasing LET in the range 67-120 keV/microm (corresponding to the energy of 7-3 MeV). On the other hand, the generation of small and intermediate-size DNA fragments (0.1-100 kbp) increased with LET, indicating an increased intratrack long-range clustering of breaks. The fragment size distribution was measured in several size classes down to the smallest class of 0.1-2 kbp. When the clustering was taken into account, the actual number of DNA double-strand breaks (separated by at least 0.1 kbp) could be calculated and was found to be in the range 0.010-0.012 breaks/Mbp Gy(-1). This is two- to threefold higher than the apparent yield obtained by the FAR assay. The measured yield of double-strand breaks as a function of LET is compared with theoretical Monte Carlo calculations that simulate the track structure of energy depositions from helium ions as they interact with the 30-nm chromatin fiber. When the calculation is performed to include fragments larger than 0.1 kbp (to correspond to the experimental measurements), there is good agreement between experiment and theory.


Assuntos
DNA/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Hélio/toxicidade , Células Cultivadas , Ciclotrons , Dano ao DNA , Humanos , Conformação de Ácido Nucleico
19.
Cell Cycle ; 10(12): 1998-2007, 2011 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-21558802

RESUMO

XPG is a structure-specific endonuclease required for nucleotide excision repair (NER). XPG incision defects result in the cancer-prone syndrome xeroderma pigmentosum, whereas truncating mutations of XPG cause the severe postnatal progeroid developmental disorder Cockayne syndrome. We show that XPG interacts directly with WRN protein, which is defective in the premature aging disorder Werner syndrome, and that the two proteins undergo similar subnuclear redistribution in S phase and colocalize in nuclear foci. The co-localization was observed in mid- to late S phase, when WRN moves from nucleoli to nuclear foci that have been shown to contain both protein markers of stalled replication forks and telomeric proteins. We mapped the interaction between XPG and WRN to the C-terminal domains of each, and show that interaction with the C-terminal domain of XPG strongly stimulates WRN helicase activity. WRN also possesses a competing DNA single-strand annealing activity that, combined with unwinding, has been shown to coordinate regression of model replication forks to form Holliday junction/chicken foot intermediate structures. We tested whether XPG stimulated WRN annealing activity, and found that XPG itself has intrinsic strand annealing activity that requires the unstructured R- and C-terminal domains but not the conserved catalytic core or endonuclease activity. Annealing by XPG is cooperative, rather than additive, with WRN annealing. Taken together, our results suggest a novel function for XPG in S phase that is, at least in part, performed coordinately with WRN, and which may contribute to the severity of the phenotypes that occur upon loss of XPG.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Endonucleases/metabolismo , Exodesoxirribonucleases/metabolismo , Proteínas Nucleares/metabolismo , RecQ Helicases/metabolismo , Fatores de Transcrição/metabolismo , Síndrome de Werner/enzimologia , Sítios de Ligação , DNA Helicases , Reparo do DNA , Replicação do DNA , Proteínas de Ligação a DNA/fisiologia , Endonucleases/fisiologia , Exodesoxirribonucleases/fisiologia , Humanos , Proteínas Nucleares/fisiologia , Ligação Proteica , RecQ Helicases/fisiologia , Fase S , Fatores de Transcrição/fisiologia , Helicase da Síndrome de Werner , Xeroderma Pigmentoso
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA