Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
Plant Cell ; 31(10): 2386-2410, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31416823

RESUMO

Mycorrhizal fungi form mutualistic associations with the roots of most land plants and provide them with mineral nutrients from the soil in exchange for fixed carbon derived from photosynthesis. The common symbiosis pathway (CSP) is a conserved molecular signaling pathway in all plants capable of associating with arbuscular mycorrhizal fungi. It is required not only for arbuscular mycorrhizal symbiosis but also for rhizobia-legume and actinorhizal symbioses. Given its role in such diverse symbiotic associations, we hypothesized that the CSP also plays a role in ectomycorrhizal associations. We showed that the ectomycorrhizal fungus Laccaria bicolor produces an array of lipochitooligosaccharides (LCOs) that can trigger both root hair branching in legumes and, most importantly, calcium spiking in the host plant Populus in a CASTOR/POLLUX-dependent manner. Nonsulfated LCOs enhanced lateral root development in Populus in a calcium/calmodulin-dependent protein kinase (CCaMK)-dependent manner, and sulfated LCOs enhanced the colonization of Populus by L. bicolor Compared with the wild-type Populus, the colonization of CASTOR/POLLUX and CCaMK RNA interference lines by L. bicolor was reduced. Our work demonstrates that similar to other root symbioses, L. bicolor uses the CSP for the full establishment of its mutualistic association with Populus.


Assuntos
Canais de Cálcio/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Cálcio/metabolismo , Laccaria/metabolismo , Lipopolissacarídeos/metabolismo , Raízes de Plantas/microbiologia , Simbiose/fisiologia , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Regulação da Expressão Gênica de Plantas , Lipopolissacarídeos/química , Micorrizas/crescimento & desenvolvimento , Micorrizas/metabolismo , Micorrizas/fisiologia , Raízes de Plantas/química , Raízes de Plantas/crescimento & desenvolvimento , Raízes de Plantas/metabolismo , Plantas Geneticamente Modificadas , Populus/genética , Populus/metabolismo , Transdução de Sinais
2.
Mycorrhiza ; 32(3-4): 281-303, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35511363

RESUMO

Arbuscular mycorrhizal (AM) fungi form a root endosymbiosis with many agronomically important crop species. They enhance the ability of their host to obtain nutrients from the soil and increase the tolerance to biotic and abiotic stressors. However, AM fungal species can differ in the benefits they provide to their host plants. Here, we examined the putative molecular mechanisms involved in the regulation of the physiological response of Medicago truncatula to colonization by Rhizophagus irregularis or Glomus aggregatum, which have previously been characterized as high- and low-benefit AM fungal species, respectively. Colonization with R. irregularis led to greater growth and nutrient uptake than colonization with G. aggregatum. These benefits were linked to an elevated expression in the roots of strigolactone biosynthesis genes (NSP1, NSP2, CCD7, and MAX1a), mycorrhiza-induced phosphate (PT8), ammonium (AMT2;3), and nitrate (NPF4.12) transporters and the putative ammonium transporter NIP1;5. R. irregularis also stimulated the expression of photosynthesis-related genes in the shoot and the upregulation of the sugar transporters SWEET1.2, SWEET3.3, and SWEET 12 and the lipid biosynthesis gene RAM2 in the roots. In contrast, G. aggregatum induced the expression of biotic stress defense response genes in the shoots, and several genes associated with abiotic stress in the roots. This suggests that either the host perceives colonization by G. aggregatum as pathogen attack or that G. aggregatum can prime host defense responses. Our findings highlight molecular mechanisms that host plants may use to regulate their association with high- and low-benefit arbuscular mycorrhizal symbionts.


Assuntos
Compostos de Amônio , Medicago truncatula , Micorrizas , Compostos de Amônio/metabolismo , Medicago truncatula/microbiologia , Micorrizas/fisiologia , Raízes de Plantas/microbiologia , Simbiose/fisiologia , Transcriptoma
3.
J Exp Bot ; 72(15): 5285-5299, 2021 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-33954584

RESUMO

Split-root assays have been used widely in studies focused on understanding the complex regulatory mechanisms in legume-rhizobia symbioses, root nitrogen rhizodeposition, and belowground nitrogen transfer, and the effects of different biotic/abiotic factors on this symbiotic interaction. This assay allows a plant to have a root system that is physically divided into two distinct sections that are both still attached to a common shoot. Thus, each root section can be treated separately to monitor local and systemic plant responses. Different techniques are used to establish split-root assemblies, including double-pot systems, divided growth pouches, elbow root assembly, twin-tube systems, a single pot or chamber with a partition in the center, and divided agar plates. This review is focused on discussing the various types of split-root assays currently used in legume-based studies, and their associated advantages and limitations. Furthermore, this review also focuses on how split-root assays have been used for studies on nitrogen rhizodeposition, belowground nitrogen transfer, systemic regulation of nodulation, and biotic and abiotic factors affecting legume-rhizobia symbioses.


Assuntos
Fabaceae , Rhizobium , Nitrogênio , Fixação de Nitrogênio , Nodulação , Raízes de Plantas , Nódulos Radiculares de Plantas , Simbiose
4.
New Phytol ; 208(1): 79-87, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25982949

RESUMO

Ectomycorrhizal (ECM) symbioses are among the most widespread associations between roots of woody plants and soil fungi in forest ecosystems. These associations contribute significantly to the sustainability and sustainagility of these ecosystems through nutrient cycling and carbon sequestration. Unfortunately, the molecular mechanisms controlling the mutual recognition between both partners are still poorly understood. Elegant work has demonstrated that effector proteins from ECM and arbuscular mycorrhizal (AM) fungi regulate host defenses by manipulating plant hormonal pathways. In parallel, genetic and evolutionary studies in legumes showed that a 'common symbiosis pathway' is required for the establishment of the ancient AM symbiosis and has been recruited for the rhizobia-legume association. Given that genes of this pathway are present in many angiosperm trees that develop ectomycorrhizas, we propose their potential involvement in some but not all ECM associations. The maintenance of a successful long-term relationship seems strongly regulated by resource allocation between symbiotic partners, suggesting that nutrients themselves may serve as signals. This review summarizes our current knowledge on the early and late signal exchanges between woody plants and ECM fungi, and we suggest future directions for decoding the molecular basis of the underground dance between trees and their favorite fungal partners.


Assuntos
Florestas , Fungos , Genes de Plantas , Micorrizas/genética , Solo/química , Simbiose , Árvores/genética , Carbono/metabolismo , Fabaceae/genética , Fabaceae/metabolismo , Fabaceae/microbiologia , Fungos/genética , Fungos/metabolismo , Micorrizas/metabolismo , Nitrogênio/metabolismo , Transdução de Sinais , Microbiologia do Solo , Árvores/metabolismo , Árvores/microbiologia
5.
Comput Struct Biotechnol J ; 21: 1122-1139, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36789259

RESUMO

For plants, distinguishing between mutualistic and pathogenic microbes is a matter of survival. All microbes contain microbe-associated molecular patterns (MAMPs) that are perceived by plant pattern recognition receptors (PRRs). Lysin motif receptor-like kinases (LysM-RLKs) are PRRs attuned for binding and triggering a response to specific MAMPs, including chitin oligomers (COs) in fungi, lipo-chitooligosaccharides (LCOs), which are produced by mycorrhizal fungi and nitrogen-fixing rhizobial bacteria, and peptidoglycan in bacteria. The identification and characterization of LysM-RLKs in candidate bioenergy crops including Populus are limited compared to other model plant species, thus inhibiting our ability to both understand and engineer microbe-mediated gains in plant productivity. As such, we performed a sequence analysis of LysM-RLKs in the Populus genome and predicted their function based on phylogenetic analysis with known LysM-RLKs. Then, using predictive models, molecular dynamics simulations, and comparative structural analysis with previously characterized CO and LCO plant receptors, we identified probable ligand-binding sites in Populus LysM-RLKs. Using several machine learning models, we predicted remarkably consistent binding affinity rankings of Populus proteins to CO. In addition, we used a modified Random Walk with Restart network-topology based approach to identify a subset of Populus LysM-RLKs that are functionally related and propose a corresponding signal transduction cascade. Our findings provide the first look into the role of LysM-RLKs in Populus-microbe interactions and establish a crucial jumping-off point for future research efforts to understand specificity and redundancy in microbial perception mechanisms.

6.
J Addict Med ; 16(6): 716-721, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35913992

RESUMO

OBJECTIVE: Although primary care settings have benefits for implementing office-based opioid treatment (OBOT) programs with buprenorphine, few studies have examined the impact on patient retention beyond 12 months. The objective of this study is to assess long-term outcomes of buprenorphine treatment for opioid use disorder (OUD) integrated into comprehensive primary care treatment at a family medicine practice. METHODS: A retrospective chart review of patients diagnosed with OUD who received treatment with buprenorphine between December 2006 and January 2018 was conducted at private family medicine practice in semirural Upstate New York. Patients were seen continuously by the same provider. The primary outcome was retention in OBOT at 3 years. RESULTS: The primary outcome was met by 47.4% of included patients (N = 152). Mean retention in care for all patients was 24.3 months. More than three quarters of patients (77%) had a least one psychiatric comorbidity managed by the practice, most commonly depression (59.9%). Self-reported history of intravenous drug use at baseline was associated with a higher likelihood of patient dropout at year 1 (odds ratio, 2.99; 95% confidence interval, 1.39-6.44; P = 0.004) and year 2 (odds ratio, 2.46; 95% confidence interval, 1.15-5.28; P = 0.019), with no difference observed at year 3. CONCLUSIONS: Office-based opioid treatment with buprenorphine in a family medicine practice setting resulted in high retention rates, emphasizing the importance of continuity of care and integration of primary care within the OUD treatment model. Further research is needed on barriers to implementation of OBOT among family medicine providers.


Assuntos
Buprenorfina , Transtornos Relacionados ao Uso de Opioides , Humanos , Buprenorfina/uso terapêutico , Tratamento de Substituição de Opiáceos/métodos , Analgésicos Opioides/uso terapêutico , Medicina de Família e Comunidade , Estudos Retrospectivos , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico
7.
Plant Signal Behav ; 16(6): 1903758, 2021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-33794743

RESUMO

Populus sp. is a developing feedstock for second-generation biofuel production. To ensure its success as a sustainable biofuel source, it is essential to capitalize on the ability of Populus sp. to associate with beneficial plant-associated microbes (e.g., mycorrhizal fungi) and engineer Populus sp. to associate with non-native symbionts (e.g., rhizobia). Here, we review recent research into the molecular mechanisms that control ectomycorrhizal associations in Populus sp. with particular emphasis on the discovery that ectomycorrhizal fungi produce lipochitooligosaccharides capable of activating the common symbiosis pathway. We also present new evidence that lipo-chitooligosaccharides produced by both ectomycorrhizal fungi and various species of rhizobia that do not associate with Populus sp. can induce nuclear calcium spiking in the roots of Populus sp. Thus, we argue Populus sp. already possesses the molecular machinery necessary for perceiving rhizobia, and the next step in engineering symbiosis with rhizobia should be focused on inducing bacterial accommodation and nodule organogenesis. The gene Nodule INception is central to these processes, and several putative orthologs are present in Populus sp. Manipulating the promoters of these genes to match that of plants in the nitrogen-fixing clade may be sufficient to introduce nodulation in Populus sp.


Assuntos
Lipopolissacarídeos/metabolismo , Micorrizas/fisiologia , Populus/metabolismo , Populus/microbiologia , Rhizobium/fisiologia , Nódulos Radiculares de Plantas/microbiologia , Simbiose/fisiologia , Biocombustíveis , Produtos Agrícolas/metabolismo , Produtos Agrícolas/microbiologia , Nódulos Radiculares de Plantas/metabolismo
8.
Nat Commun ; 11(1): 3897, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753587

RESUMO

Lipo-chitooligosaccharides (LCOs) are signaling molecules produced by rhizobial bacteria that trigger the nodulation process in legumes, and by some fungi that also establish symbiotic relationships with plants, notably the arbuscular and ecto mycorrhizal fungi. Here, we show that many other fungi also produce LCOs. We tested 59 species representing most fungal phyla, and found that 53 species produce LCOs that can be detected by functional assays and/or by mass spectroscopy. LCO treatment affects spore germination, branching of hyphae, pseudohyphal growth, and transcription in non-symbiotic fungi from the Ascomycete and Basidiomycete phyla. Our findings suggest that LCO production is common among fungi, and LCOs may function as signals regulating fungal growth and development.


Assuntos
Quitina/análogos & derivados , Quitina/metabolismo , Fungos/crescimento & desenvolvimento , Fungos/metabolismo , Transdução de Sinais/fisiologia , Ascomicetos/crescimento & desenvolvimento , Basidiomycota/crescimento & desenvolvimento , Quitosana , Ecologia , Ácidos Graxos/metabolismo , Micorrizas/fisiologia , Oligossacarídeos , Rhizobium/metabolismo , Esporos Fúngicos/crescimento & desenvolvimento , Simbiose/fisiologia
9.
Nat Plants ; 5(7): 676-680, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31285560

RESUMO

The molecular mechanisms underlying mycorrhizal symbioses, the most ubiquitous and impactful mutualistic plant-microbial interaction in nature, are largely unknown. Through genetic mapping, resequencing and molecular validation, we demonstrate that a G-type lectin receptor-like kinase (lecRLK) mediates the symbiotic interaction between Populus and the ectomycorrhizal fungus Laccaria bicolor. This finding uncovers an important molecular step in the establishment of symbiotic plant-fungal associations and provides a molecular target for engineering beneficial mycorrhizal relationships.


Assuntos
Laccaria/fisiologia , Micorrizas/fisiologia , Proteínas de Plantas/metabolismo , Populus/enzimologia , Populus/microbiologia , Proteínas Quinases/metabolismo , Simbiose , Laccaria/genética , Micorrizas/genética , Proteínas de Plantas/genética , Raízes de Plantas/enzimologia , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Populus/genética , Populus/fisiologia , Proteínas Quinases/genética
11.
PLoS One ; 11(10): e0163121, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27706176

RESUMO

Despite decades of research, the effects of spectral quality on plant growth, and development are not well understood. Much of our current understanding comes from studies with daily integrated light levels that are less than 10% of summer sunlight thus making it difficult to characterize interactions between light quality and quantity. Several studies have reported that growth is increased under fluorescent lamps compared to mixtures of wavelengths from LEDs. Conclusions regarding the effect of green light fraction range from detrimental to beneficial. Here we report the effects of eight blue and green light fractions at two photosynthetic photon fluxes (PPF; 200 and 500 µmol m-2 s-1; with a daily light integral of 11.5 and 29 mol m-2 d-1) on growth (dry mass), leaf expansion, stem and petiole elongation, and whole-plant net assimilation of seven diverse plant species. The treatments included cool, neutral, and warm white LEDs, and combinations of blue, green and/or red LEDs. At the higher PPF (500), increasing blue light in increments from 11 to 28% reduced growth in tomato, cucumber, and pepper by 22, 26, and 14% respectively, but there was no statistically significant effect on radish, soybean, lettuce or wheat. At the lower PPF (200), increasing blue light reduced growth only in tomato (41%). The effects of blue light on growth were mediated by changes in leaf area and radiation capture, with minimal effects on whole-plant net-assimilation. In contrast to the significant effects of blue light, increasing green light in increments from 0 to 30% had a relatively small effect on growth, leaf area and net assimilation at either low or high PPF. Surprisingly, growth of three of the seven species was not reduced by a treatment with 93% green light compared to the broad spectrum treatments. Collectively, these results are consistent with a shade avoidance response associated with either low blue or high green light fractions.


Assuntos
Capsicum/crescimento & desenvolvimento , Cucumis sativus/crescimento & desenvolvimento , Luz , Solanum lycopersicum/crescimento & desenvolvimento , Capsicum/metabolismo , Capsicum/efeitos da radiação , Clorofila/metabolismo , Cucumis sativus/metabolismo , Cucumis sativus/efeitos da radiação , Solanum lycopersicum/metabolismo , Solanum lycopersicum/efeitos da radiação , Fótons , Fotossíntese/fisiologia , Folhas de Planta/metabolismo , Folhas de Planta/efeitos da radiação , Caules de Planta/fisiologia
12.
Photochem Photobiol ; 90(3): 574-84, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24372324

RESUMO

Photosynthesis (Pn) and photomorphogenesis (Pm) are affected by light quality, light intensity and photoperiod. Although blue light (BL) is necessary for normal development, it is less efficient in driving Pn than other wavelengths of photosynthetically active radiation. The effects of BL on Pm are highly species dependent. Here we report the interacting effects of BL and photosynthetic photon flux (PPF) on growth and development of lettuce, radish and pepper. We used light-emitting diode (LED) arrays to provide BL fractions from 11% to 28% under broad-spectrum white LEDs, and from 0.3% to 92% under monochromatic LEDs. All treatments were replicated three times at each of two PPFs (200 and 500 µmol m(-2) s(-1)). Other than light quality, environmental conditions were uniformly maintained across chambers. Regardless of PPF, BL was necessary to prevent shade-avoidance responses in radish and lettuce. For lettuce and radish, increasing BL reduced stem length, and for both species, there were significant interactions of BL with PPF for leaf expansion. Increasing BL reduced petiole length in radish and flower number in pepper. BL minimally affected pepper growth and other developmental parameters. Pepper seedlings were more photobiologically sensitive than older plants. Surprisingly, there were few interactions between monochromatic and broad-spectrum light sources.


Assuntos
Luz , Fotossíntese , Verduras/crescimento & desenvolvimento , Morfogênese , Fotoperíodo , Folhas de Planta/crescimento & desenvolvimento
13.
J Feline Med Surg ; 15(9): 811-7, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23966006

RESUMO

UNLABELLED: GUIDELINES RATIONALE: Cats are among the most commonly kept domestic pets, and coexist with humans in a variety of different circumstances. Cats are sentient beings and, as such, humans have a responsibility for cat welfare where humans and cats coexist. Because cats reproduce efficiently, measures to control populations are frequently needed, but these should be based on ethical and humane approaches. FRAMEWORK: These consensus guidelines from the International Society of Feline Medicine's Welfare Advisory Panel provide a framework for the approach to welfare and population control measures, primarily among unowned cats and those going through a homing programme.


Assuntos
Bem-Estar do Animal/normas , Animais Selvagens/cirurgia , Gatos/cirurgia , Anticoncepção/veterinária , Medicina Veterinária/normas , Animais , Gatos/psicologia , Consenso , Eutanásia , Vínculo Humano-Animal , Histerectomia/veterinária , Controle da População/métodos , Densidade Demográfica , Sociedades/normas , Vasectomia/veterinária
14.
PLoS One ; 5(5): e9622, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20502643

RESUMO

BACKGROUND: Saba Bank Atoll, Netherlands Antilles, is one of the three largest atolls on Earth and provides habitat for an extensive coral reef community. To improve our knowledge of this vast marine resource, a survey of biodiversity at Saba Bank included a multi-disciplinary team that sampled fishes, mollusks, crustaceans, macroalgae, and sponges. METHODOLOGY/PRINCIPAL FINDINGS: A single member of the dive team conducted surveys of sponge biodiversity during eight dives at six locations, at depths ranging from 15 to 30 m. This preliminary assessment documented the presence of 45 species pooled across multiple locations. Rarefaction analysis estimated that only 48 to 84% of species diversity was sampled by this limited effort, clearly indicating a need for additional surveys. An analysis of historical collections from Saba and Saba Bank revealed an additional 36 species, yielding a total of 81 sponge species recorded from this area. CONCLUSIONS/SIGNIFICANCE: This observed species composition is similar to that found on widespread Caribbean reefs, indicating that the sponge fauna of Saba Bank is broadly representative of the Caribbean as a whole. A robust population of the giant barrel sponge, Xestospongia muta, appeared healthy with none of the signs of disease or bleaching reported from other Caribbean reefs; however, more recent reports of anchor chain damage to these sponges suggests that human activities can have dramatic impacts on these communities. Opportunities to protect this extremely large habitat should be pursued, as Saba Bank may serve as a significant reservoir of sponge species diversity.


Assuntos
Biodiversidade , Poríferos/fisiologia , Animais , Análise por Conglomerados , Mergulho , Geografia , Humanos , Antilhas Holandesas , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA