Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Osteoarthr Cartil Open ; 5(3): 100378, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37388644

RESUMO

Objective: The measurement of in vivo intervertebral disc (IVD) mechanics may be used to understand the etiology of IVD degeneration and low back pain (LBP). To this end, our lab has developed methods to measure IVD morphology and uniaxial compressive deformation (% change in IVD height) resulting from dynamic activity, in vivo, using magnetic resonance images (MRI). However, due to the time-intensive nature of manual image segmentation, we sought to validate an image segmentation algorithm that could accurately and reliably reproduce models of in vivo tissue mechanics. Design: Therefore, we developed and evaluated two commonly employed deep learning architectures (2D and 3D U-Net) for the segmentation of IVDs from MRI. The performance of these models was evaluated for morphological accuracy by comparing predicted IVD segmentations (Dice similarity coefficient, mDSC; average surface distance, ASD) to manual (ground truth) measures. Likewise, functional reliability and precision were assessed by evaluating the intraclass correlation coefficient (ICC) and standard error of measurement (SEm) of predicted and manually derived deformation measures. Results: Peak model performance was obtained using the 3D U-net architecture, yielding a maximum mDSC â€‹= â€‹0.9824 and component-wise ASDx â€‹= â€‹0.0683 â€‹mm; ASDy â€‹= â€‹0.0335 â€‹mm; ASDz â€‹= â€‹0.0329 â€‹mm. Functional model performance demonstrated excellent reliability ICC â€‹= â€‹0.926 and precision SEm â€‹= â€‹0.42%. Conclusions: This study demonstrated that a deep learning framework can precisely and reliably automate measures of IVD function, drastically improving the throughput of these time-intensive methods.

2.
Am J Sports Med ; 51(1): 58-65, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36440714

RESUMO

BACKGROUND: Bone bruises observed on magnetic resonance imaging (MRI) can provide insight into the mechanisms of noncontact anterior cruciate ligament (ACL) injury. However, it remains unclear whether the position of the knee near the time of injury differs between patients evaluated with different patterns of bone bruising, particularly with regard to valgus angles. HYPOTHESIS: The position of the knee near the time of injury is similar between patients evaluated with 2 commonly occurring patterns of bone bruising. STUDY DESIGN: Descriptive laboratory study. METHODS: Clinical T2- and T1-weighted MRI scans obtained within 6 weeks of noncontact ACL rupture were reviewed. Patients had either 3 (n = 20) or 4 (n = 30) bone bruises. Patients in the 4-bone bruise group had bruising of the medial and lateral compartments of the femur and tibia, whereas patients in the 3-bone bruise group did not have a bruise on the medial femoral condyle. The outer contours of the bones and associated bruises were segmented from the MRI scans and used to create 3-dimensional surface models. For each patient, the position of the knee near the time of injury was predicted by moving the tibial model relative to the femoral model to maximize the overlap of the tibiofemoral bone bruises. Logistic regressions (adjusted for sex, age, and presence of medial collateral ligament injury) were used to assess relationships between predicted injury position (quantified in terms of knee flexion angle, valgus angle, internal rotation angle, and anterior tibial translation) and bone bruise group. RESULTS: The predicted injury position for patients in both groups involved a flexion angle <20°, anterior translation >20 mm, valgus angle <10°, and internal rotation angle <10°. The injury position for the 3-bone bruise group involved less flexion (odds ratio [OR], 0.914; 95% CI, 0.846-0.987; P = .02) and internal rotation (OR, 0.832; 95% CI, 0.739-0.937; P = .002) as compared with patients with 4 bone bruises. CONCLUSION: The predicted position of injury for patients displaying both 3 and 4 bone bruises involved substantial anterior tibial translation (>20 mm), with the knee in a straight position in both the sagittal (<20°) and the coronal (<10°) planes. CLINICAL RELEVANCE: Landing on a straight knee with subsequent anterior tibial translation is a potential mechanism of noncontact ACL injury.


Assuntos
Lesões do Ligamento Cruzado Anterior , Contusões , Traumatismos do Joelho , Humanos , Lesões do Ligamento Cruzado Anterior/diagnóstico por imagem , Lesões do Ligamento Cruzado Anterior/patologia , Traumatismos do Joelho/diagnóstico por imagem , Traumatismos do Joelho/patologia , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/patologia , Tíbia/patologia , Fêmur/patologia , Contusões/diagnóstico por imagem , Contusões/patologia , Epífises/patologia , Imageamento por Ressonância Magnética/métodos , Hematoma/patologia , Fenômenos Biomecânicos
3.
Osteoarthr Cartil Open ; 5(3): 100376, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37719442

RESUMO

Objective: To examine the effects of a 6-month weight loss intervention on physical function, inflammatory biomarkers, and metabolic biomarkers in both those with and without osteoarthritis (OA). Design: 59 individuals ≥60 years old with obesity and a functional impairment were enrolled into this IRB approved clinical trial and randomized into one of two 6-month weight loss arms: a higher protein hypocaloric diet or a standard protein hypocaloric diet. All participants were prescribed individualized 500-kcal daily-deficit diets, with a goal of 10% weight loss. Additionally, participants participated in three, low-intensity, exercise sessions per week. Physical function, serum biomarkers and body composition data were assessed at the baseline and 6-month timepoints. Statistical analyses assessed the relationships between biomarkers, physical function, body composition, and OA status as a result of the intervention. Results: No group effects of dietary intervention were detected on any outcome measures (multiple p â€‹> â€‹0.05). During the 6-month trial, participants lost 6.2 â€‹± â€‹4.0% of their bodyweight (p â€‹< â€‹0.0001) and experienced improved physical function on the Short-Performance-Physical-Battery (p â€‹< â€‹0.0001), 8-foot-up-and-go (p â€‹< â€‹0.0001), and time to complete 10-chair-stands (p â€‹< â€‹0.0001). Adiponectin concentrations (p â€‹= â€‹0.0480) were elevated, and cartilage oligomeric matrix protein (COMP) concentrations (p â€‹< â€‹0.0001) were reduced; further analysis revealed that reductions in serum COMP concentrations were greater in OA-negative individuals. Conclusions: These results suggest that weight loss in older adults with and without OA may provide a protective effect to cartilage and OA. In particular, OA-negative individuals may be able to mitigate changes associated with OA through weight loss.

4.
J Biomech ; 121: 110392, 2021 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-33819699

RESUMO

High body mass index (BMI) and obesity have been implicated as risk factors for lumbar degenerative disc disease and low back pain. Despite this, there is limited in vivo data to quantify how obesity influences the mechanical function of intervertebral discs (IVD) in response to activities of daily living. Recently, our lab has developed methodologies to non-invasively measure in vivo IVD deformation resulting from activities of daily living using magnetic resonance (MR) imaging and solid modeling techniques. This pilot study expands on these methodologies to assess how BMI influences IVD deformation following treadmill walking in eight asymptomatic individuals. Ordinary least squares regression analyses revealed a statistically significant relationship between BMI and compressive deformation (strain (%)) in the L5-S1 IVD (R2 = 0.61, p < 0.05). This relationship was weaker in the L3-L4 (R2 = 0.28, p > 0.05) and L4-L5 IVDs (R2 = 0.28, p > 0.05). Importantly, no relationship between pre-exercise disc height and BMI was identified (p > 0.05). Therefore, the results of this study suggest that BMI may alter the mechanical response of lumbar spine IVDs, particularly at the L5-S1 level. Furthermore, the observed relationship between increased BMI and IVD compressive deformation, in the absence of a detected relationship between pre-exercise disc height and BMI, suggests that changes in IVD mechanical function may be more sensitive to alterations in disc health than static clinical imaging alone. This finding highlights the importance of quantifying disc mechanical function when examining the relationship between BMI and IVD degeneration.


Assuntos
Degeneração do Disco Intervertebral , Disco Intervertebral , Atividades Cotidianas , Índice de Massa Corporal , Teste de Esforço , Humanos , Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/diagnóstico por imagem , Vértebras Lombares/diagnóstico por imagem , Imageamento por Ressonância Magnética , Projetos Piloto , Caminhada
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA