Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(13)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39000232

RESUMO

Various human diseases are triggered by molecular alterations influencing the fine-tuned expression and activity of transcription factors, usually due to imbalances in targets including protein-coding genes and non-coding RNAs, such as microRNAs (miRNAs). The transcription factor EB (TFEB) modulates human cellular networks, overseeing lysosomal biogenesis and function, plasma-membrane trafficking, autophagic flux, and cell cycle progression. In endothelial cells (ECs), TFEB is essential for the maintenance of endothelial integrity and function, ensuring vascular health. However, the comprehensive regulatory network orchestrated by TFEB remains poorly understood. Here, we provide novel mechanistic insights into how TFEB regulates the transcriptional landscape in primary human umbilical vein ECs (HUVECs), using an integrated approach combining high-throughput experimental data with dedicated bioinformatics analysis. By analyzing HUVECs ectopically expressing TFEB using ChIP-seq and examining both polyadenylated mRNA and small RNA sequencing data from TFEB-silenced HUVECs, we have developed a bioinformatics pipeline mapping the different gene regulatory interactions driven by TFEB. We show that TFEB directly regulates multiple miRNAs, which in turn post-transcriptionally modulate a broad network of target genes, significantly expanding the repertoire of gene programs influenced by this transcription factor. These insights may have significant implications for vascular biology and the development of novel therapeutics for vascular disease.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos , Biologia Computacional , Redes Reguladoras de Genes , Células Endoteliais da Veia Umbilical Humana , MicroRNAs , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Biologia Computacional/métodos , Regulação da Expressão Gênica , Células Endoteliais/metabolismo
2.
EMBO J ; 38(3)2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30591554

RESUMO

Transcription factor TFEB is thought to control cellular functions-including in the vascular bed-primarily via regulation of lysosomal biogenesis and autophagic flux. Here, we report that TFEB also orchestrates a non-canonical program that controls the cell cycle/VEGFR2 pathway in the developing vasculature. In endothelial cells, TFEB depletion halts proliferation at the G1-S transition by inhibiting the CDK4/Rb pathway. TFEB-deficient cells attempt to compensate for this limitation by increasing VEGFR2 levels at the plasma membrane via microRNA-mediated mechanisms and controlled membrane trafficking. TFEB stimulates expression of the miR-15a/16-1 cluster, which limits VEGFR2 transcript stability and negatively modulates expression of MYO1C, a regulator of VEGFR2 trafficking to the cell surface. Altered levels of miR-15a/16-1 and MYO1C in TFEB-depleted cells cause increased expression of plasma membrane VEGFR2, but in a manner associated with low signaling strength. An endothelium-specific Tfeb-knockout mouse model displays defects in fetal and newborn mouse vasculature caused by reduced endothelial proliferation and by anomalous function of the VEGFR2 pathway. These previously unrecognized functions of TFEB expand its role beyond regulation of the autophagic pathway in the vascular system.


Assuntos
Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/fisiologia , Proliferação de Células , Embrião de Mamíferos/citologia , Endotélio Vascular/citologia , Regulação da Expressão Gênica no Desenvolvimento , Neovascularização Fisiológica , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Animais , Células Cultivadas , Embrião de Mamíferos/fisiologia , Endotélio Vascular/fisiologia , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/genética
3.
Angiogenesis ; 25(4): 471-492, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35545719

RESUMO

The dynamic integrin-mediated adhesion of endothelial cells (ECs) to the surrounding ECM is fundamental for angiogenesis both in physiological and pathological conditions, such as embryonic development and cancer progression. The dynamics of EC-to-ECM adhesions relies on the regulation of the conformational activation and trafficking of integrins. Here, we reveal that oncogenic transcription factor EB (TFEB), a known regulator of lysosomal biogenesis and metabolism, also controls a transcriptional program that influences the turnover of ECM adhesions in ECs by regulating cholesterol metabolism. We show that TFEB favors ECM adhesion turnover by promoting the transcription of genes that drive the synthesis of cholesterol, which promotes the aggregation of caveolin-1, and the caveolin-dependent endocytosis of integrin ß1. These findings suggest that TFEB might represent a novel target for the pharmacological control of pathological angiogenesis and bring new insights in the mechanism sustaining TFEB control of endocytosis.


Assuntos
Células Endoteliais , Integrinas , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/genética , Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos/metabolismo , Caveolina 1/metabolismo , Adesão Celular/genética , Colesterol , Células Endoteliais/metabolismo , Humanos , Integrina beta1/metabolismo , Integrinas/metabolismo , Neovascularização Patológica/metabolismo
4.
Angiogenesis ; 25(1): 113-128, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34478025

RESUMO

Embryonic stem cells (ES) are a valuable source of endothelial cells. By co-culturing ES cells with the stromal PA6 cells, the endothelial commitment can be achieved by adding exogenous FGF2 or BMP4. In this work, the molecular pathways that direct the differentiation of ES cells toward endothelium in response to FGF2 are evaluated and compared to those activated by BMP4. To this purpose the genes expression profiles of both ES/PA6 co-cultures and of pure cultures of PA6 cells were obtained by microarray technique at different time points. The bioinformatics processing of the data indicated TGFß1 as the most represented upstream regulator in FGF2-induced endothelial commitment while WNT pathway as the most represented in BMP4-activated endothelial differentiation. Loss of function experiments were performed to validate the importance of TGFß1 and WNT6 respectively in FGF2 and BMP4-induced endothelial differentiation. The loss of TGFß1 expression significantly impaired the accomplishment of the endothelial commitment unless exogenous recombinant TGFß1 was added to the culture medium. Similarly, silencing WNT6 expression partially affected the endothelial differentiation of the ES cells upon BMP4 stimulation. Such dysfunction was recovered by the addition of recombinant WNT6 to the culture medium. The ES/PA6 co-culture system recreates an in vitro complete microenvironment in which endothelial commitment is accomplished in response to alternative signals through different mechanisms. Given the importance of WNT and TGFß1 in mediating the crosstalk between tumor and stromal cells this work adds new insights in the mechanism of tumor angiogenesis and of its possible inhibition.


Assuntos
Células Endoteliais , Fator 2 de Crescimento de Fibroblastos , Fator de Crescimento Transformador beta1/fisiologia , Animais , Proteína Morfogenética Óssea 4 , Diferenciação Celular , Células-Tronco Embrionárias , Fator 2 de Crescimento de Fibroblastos/farmacologia , Camundongos , Proteínas Proto-Oncogênicas , Células Estromais , Fator de Crescimento Transformador beta1/genética , Proteínas Wnt
5.
Int J Mol Sci ; 23(3)2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35163581

RESUMO

In the last several years, accumulating evidence indicates that noncoding RNAs, especially long-noncoding RNAs (lncRNAs) and microRNAs, play essential roles in regulating angiogenesis. However, the contribution of lncRNA-mediated competing-endogenous RNA (ceRNA) activity in the control of capillary sprouting from the pre-existing ones has not been described so far. Here, by exploiting the transcriptomic profile of VEGF-A-activated endothelial cells in a consolidate three-dimensional culture system, we identified a list of lncRNAs whose expression was modified during the sprouting process. By crossing the lncRNAs with a higher expression level and the highest fold change value between unstimulated and VEGF-A-stimulated endothelial cells, we identified the unknown LINC02802 as the best candidate to take part in sprouting regulation. LINC02802 was upregulated after VEGF-A stimulation and its knockdown resulted in a significant reduction in sprouting activity. Mechanistically, we demonstrated that LINC02802 acts as a ceRNA in the post-transcriptional regulation of Mastermind-like-3 (MAML3) gene expression through a competitive binding with miR-486-5p. Taken together, these results suggest that LINC02802 plays a critical role in preventing the miR-486-5p anti-angiogenic effect and that this inhibitory effect results from the reduction in MAML3 expression.


Assuntos
Células Endoteliais da Veia Umbilical Humana/metabolismo , MicroRNAs/metabolismo , Neovascularização Fisiológica , RNA Longo não Codificante/metabolismo , Humanos , MicroRNAs/genética , RNA Longo não Codificante/genética , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/biossíntese , Fator A de Crescimento do Endotélio Vascular/genética
6.
Haematologica ; 106(6): 1624-1635, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32467137

RESUMO

A major challenge in the development of a gene therapy for hemophilia A (HA) is the selection of cell type- or tissue-specific promoters to ensure factor VIII (FVIII) expression without eliciting an immune response. As liver sinusoidal endothelial cells (LSECs) are the major FVIII source, understanding the transcriptional F8 regulation in these cells would help optimize the minimal F8 promoter (pF8) to efficiently drive FVIII expression. In silico analyses predicted several binding sites (BS) for the E26 transformation-specific (Ets) transcription factors Ets-1 and Ets-2 in the pF8. Reporter assays demonstrated a significant up-regulation of pF8 activity by Ets-1 or Ets-1/Est-2 combination, while Ets2 alone was ineffective. Moreover, Ets-1/Ets-2-DNA binding domain mutants (DBD) abolished promoter activation only when the Ets-1 DBD was removed, suggesting that pF8 up-regulation may occur through Ets-1/Ets-2 interaction with Ets-1 bound to DNA. pF8 carrying Ets-BS deletions unveiled two Ets-BS essential for pF8 activity and response to Ets overexpression. Lentivirus-mediated delivery of GFP or FVIII cassettes driven by the shortened promoters led to GFP expression mainly in endothelial cells in the liver and to long-term FVIII activity without inhibitor formation in HA mice. These data strongly support the potential application of these promoters in HA gene therapy.


Assuntos
Fator VIII , Hemofilia A , Animais , Células Endoteliais , Fator VIII/genética , Terapia Genética , Hemofilia A/genética , Hemofilia A/terapia , Lentivirus/genética , Camundongos
7.
Phys Biol ; 14(4): 045001, 2017 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-28586314

RESUMO

MicroRNAs have been found to be necessary for regulating genes implicated in almost all signaling pathways, and consequently their dysfunction influences many diseases, including cancer. Understanding of the complexity of the microRNA-mediated regulatory network has grown in terms of size, connectivity and dynamics with the development of computational and, more recently, experimental high-throughput approaches for microRNA target identification. Newly developed studies on recurrent microRNA-mediated circuits in regulatory networks, also known as network motifs, have substantially contributed to addressing this complexity, and therefore to helping understand the ways by which microRNAs achieve their regulatory role. This review provides a summarizing view of the state-of-the-art, and perspectives of research efforts on microRNA-mediated regulatory motifs. In this review, we discuss the topological properties characterizing different types of circuits, and the regulatory features theoretically enabled by such properties, with a special emphasis on examples of circuits typifying their biological significance in experimentally validated contexts. Finally, we will consider possible future developments, in particular regarding microRNA-mediated circuits involving long non-coding RNAs and epigenetic regulators.


Assuntos
Redes Reguladoras de Genes , MicroRNAs/genética , Animais , Biologia Computacional , Terapia Genética , Humanos , Camundongos , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/terapia , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Fatores de Transcrição/metabolismo
8.
Proc Natl Acad Sci U S A ; 111(13): 4892-7, 2014 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-24639548

RESUMO

Estrogen receptor-α (ERα) has central role in hormone-dependent breast cancer and its ligand-induced functions have been extensively characterized. However, evidence exists that ERα has functions that are independent of ligands. In the present work, we investigated the binding of ERα to chromatin in the absence of ligands and its functions on gene regulation. We demonstrated that in MCF7 breast cancer cells unliganded ERα binds to more than 4,000 chromatin sites. Unexpectedly, although almost entirely comprised in the larger group of estrogen-induced binding sites, we found that unliganded-ERα binding is specifically linked to genes with developmental functions, compared with estrogen-induced binding. Moreover, we found that siRNA-mediated down-regulation of ERα in absence of estrogen is accompanied by changes in the expression levels of hundreds of coding and noncoding RNAs. Down-regulated mRNAs showed enrichment in genes related to epithelial cell growth and development. Stable ERα down-regulation using shRNA, which caused cell growth arrest, was accompanied by increased H3K27me3 at ERα binding sites. Finally, we found that FOXA1 and AP2γ binding to several sites is decreased upon ERα silencing, suggesting that unliganded ERα participates, together with other factors, in the maintenance of the luminal-specific cistrome in breast cancer cells.


Assuntos
Neoplasias da Mama/genética , Receptor alfa de Estrogênio/metabolismo , Genoma Humano/genética , Sítios de Ligação , Neoplasias da Mama/patologia , Proliferação de Células , Imunoprecipitação da Cromatina , Feminino , Ontologia Genética , Humanos , Ligantes , Células MCF-7 , Reação em Cadeia da Polimerase , RNA Interferente Pequeno/metabolismo
9.
Hum Mol Genet ; 23(13): 3402-20, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24497578

RESUMO

The expansion of homopolymeric glutamine (polyQ) or alanine (polyA) repeats in certain proteins owing to genetic mutations induces protein aggregation and toxicity, causing at least 18 human diseases. PolyQ and polyA repeats can also associate in the same proteins, but the general extent of their association in proteomes is unknown. Furthermore, the structural mechanisms by which their expansion causes disease are not well understood, and these repeats are generally thought to misfold upon expansion into aggregation-prone ß-sheet structures like amyloids. However, recent evidence indicates a critical role for coiled-coil (CC) structures in triggering aggregation and toxicity of polyQ-expanded proteins, raising the possibility that polyA repeats may as well form these structures, by themselves or in association with polyQ. We found through bioinformatics screenings that polyA, polyQ and polyQA repeats have a phylogenetically graded association in human and non-human proteomes and associate/overlap with CC domains. Circular dichroism and cross-linking experiments revealed that polyA repeats can form--alone or with polyQ and polyQA--CC structures that increase in stability with polyA length, forming higher-order multimers and polymers in vitro. Using structure-guided mutagenesis, we studied the relevance of polyA CCs to the in vivo aggregation and toxicity of RUNX2--a polyQ/polyA protein associated with cleidocranial dysplasia upon polyA expansion--and found that the stability of its polyQ/polyA CC controls its aggregation, localization and toxicity. These findings indicate that, like polyQ, polyA repeats form CC structures that can trigger protein aggregation and toxicity upon expansion in human genetic diseases.


Assuntos
Peptídeos/química , Proteínas/química , Proteínas/metabolismo , Linhagem Celular , Dicroísmo Circular , Displasia Cleidocraniana/genética , Displasia Cleidocraniana/metabolismo , Subunidade alfa 1 de Fator de Ligação ao Core/genética , Subunidade alfa 1 de Fator de Ligação ao Core/metabolismo , Humanos , Microscopia Confocal , Filogenia
10.
Hepatology ; 59(1): 228-41, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23857252

RESUMO

UNLABELLED: Studies on gene and/or microRNA (miRNA) dysregulation in the early stages of hepatocarcinogenesis are hampered by the difficulty of diagnosing early lesions in humans. Experimental models recapitulating human hepatocellular carcinoma (HCC) are then used to perform this analysis. We performed miRNA and gene expression profiling to characterize the molecular events involved in the multistep process of hepatocarcinogenesis in the resistant-hepatocyte rat model. A high percentage of dysregulated miRNAs/genes in HCC were similarly altered in early preneoplastic lesions positive for the stem/progenitor cell marker cytokeratin-19, indicating that several HCC-associated alterations occur from the very beginning of the carcinogenic process. Our analysis also identified miRNA/gene-target networks aberrantly activated at the initial stage of hepatocarcinogenesis. Activation of the nuclear factor erythroid related factor 2 (NRF2) pathway and up-regulation of the miR-200 family were among the most prominent changes. The relevance of these alterations in the development of HCC was confirmed by the observation that NRF2 silencing impaired while miR-200a overexpression promoted HCC cell proliferation in vitro. Moreover, T3-induced in vivo inhibition of the NRF2 pathway accompanied the regression of cytokeratin-19-positive nodules, suggesting that activation of this transcription factor contributes to the onset and progression of preneoplastic lesions towards malignancy. The finding that 78% of genes and 57% of dysregulated miRNAs in rat HCC have been previously associated with human HCC as well underlines the translational value of our results. CONCLUSION: This study indicates that most of the molecular changes found in HCC occur in the very early stages of hepatocarcinogenesis. Among these, the NRF2 pathway plays a relevant role and may represent a new therapeutic target.


Assuntos
Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas Experimentais/metabolismo , MicroRNAs/metabolismo , Fator 2 Relacionado a NF-E2/metabolismo , Lesões Pré-Cancerosas/metabolismo , Animais , Carcinogênese , Carcinoma Hepatocelular/etiologia , Proliferação de Células , Humanos , Neoplasias Hepáticas Experimentais/etiologia , Masculino , Ratos , Ratos Endogâmicos F344
11.
Biol Direct ; 19(1): 100, 2024 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-39478626

RESUMO

Alzheimer's disease (AD) is a complex neurodegenerative disorder significantly impairing cognitive faculties, memory, and physical abilities. To characterize the modulation of the gut microbiota in an in vivo AD model, we performed shotgun metagenomics sequencing on 3xTgAD mice at key time points (i.e., 2, 6, and 12 months) of AD progression. Fecal samples from both 3xTgAD and wild-type mice were collected, DNA extracted, and sequenced. Quantitative taxon abundance assessment using MetaPhlAn 4 ensured precise microbial community representation. The analysis focused on species-level genome bins (SGBs) including both known and unknown SGBs (kSGBs and uSGBs, respectively) and also comprised higher taxonomic categories such as family-level genome bins (FGBs), class-level genome bins (CGBs), and order-level genome bins (OGBs). Our bioinformatic results pinpointed the presence of extensive gut microbial diversity in AD mice and showed that the largest proportion of AD- and aging-associated microbiome changes in 3xTgAD mice concern SGBs that belong to the Bacteroidota and Firmicutes phyla, along with a large set of uncharacterized SGBs. Our findings emphasize the need for further advanced bioinformatic studies for accurate classification and functional analysis of these elusive microbial species in relation to their potential bridging role in the gut-brain axis and AD pathogenesis.


Assuntos
Doença de Alzheimer , Modelos Animais de Doenças , Microbioma Gastrointestinal , Metagenômica , Animais , Doença de Alzheimer/microbiologia , Doença de Alzheimer/genética , Camundongos , Metagenômica/métodos , Camundongos Transgênicos , Fezes/microbiologia , Metagenoma
12.
Commun Biol ; 7(1): 292, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459109

RESUMO

Human cytomegalovirus (HCMV) is an opportunistic pathogen causing severe diseases in immunosuppressed individuals. To replicate its double-stranded DNA genome, HCMV induces profound changes in cellular homeostasis that may resemble senescence. However, it remains to be determined whether HCMV-induced senescence contributes to organ-specific pathogenesis. Here, we show a direct cytopathic effect of HCMV on primary renal proximal tubular epithelial cells (RPTECs), a natural setting of HCMV disease. We find that RPTECs are fully permissive for HCMV replication, which endows them with an inflammatory gene signature resembling the senescence-associated secretory phenotype (SASP), as confirmed by the presence of the recently established SenMayo gene set, which is not observed in retina-derived epithelial (ARPE-19) cells. Although HCMV-induced senescence is not cell-type specific, as it can be observed in both RPTECs and human fibroblasts (HFFs), only infected RPTECs show downregulation of LAMINB1 and KI67 mRNAs, and enhanced secretion of IL-6 and IL-8, which are well-established hallmarks of senescence. Finally, HCMV-infected RPTECs have the ability to trigger a senescence/inflammatory loop in an IL-6-dependent manner, leading to the development of a similar senescence/inflammatory phenotype in neighboring uninfected cells. Overall, our findings raise the intriguing possibility that this unique inflammatory loop contributes to HCMV-related pathogenesis in the kidney.


Assuntos
Infecções por Citomegalovirus , Interleucina-6 , Humanos , Interleucina-6/genética , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/patologia , Citomegalovirus/genética , Células Epiteliais/patologia , DNA
13.
Biomedicines ; 11(7)2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37509516

RESUMO

Diacylglycerol kinases (DGKs) play dual roles in cell transformation and immunosurveillance. According to cancer expression databases, acute myeloid leukemia (AML) exhibits significant overexpression of multiple DGK isoforms, including DGKA, DGKD and DGKG, without a precise correlation with specific AML subtypes. In the TGCA database, high DGKA expression negatively correlates with survival, while high DGKG expression is associated with a more favorable prognosis. DGKA and DGKG also feature different patterns of co-expressed genes. Conversely, the BeatAML and TARGET databases show that high DGKH expression is correlated with shorter survival. To assess the suitability of DGKs as therapeutic targets, we treated HL-60 and HEL cells with DGK inhibitors and compared cell growth and survival with those of untransformed lymphocytes. We observed a specific sensitivity to R59022 and R59949, two poorly selective inhibitors, which promoted cytotoxicity and cell accumulation in the S phase in both cell lines. Conversely, the DGKA-specific inhibitors CU-3 and AMB639752 showed poor efficacy. These findings underscore the pivotal and isoform-specific involvement of DGKs in AML, offering a promising pathway for the identification of potential therapeutic targets. Notably, the DGKA and DGKH isoforms emerge as relevant players in AML pathogenesis, albeit DGKA inhibition alone seems insufficient to impair AML cell viability.

14.
Cell Death Discov ; 9(1): 201, 2023 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-37385999

RESUMO

Among all cancers, colorectal cancer (CRC) is the 3rd most common and the 2nd leading cause of death worldwide. New therapeutic strategies are required to target cancer stem cells (CSCs), a subset of tumor cells highly resistant to present-day therapy and responsible for tumor relapse. CSCs display dynamic genetic and epigenetic alterations that allow quick adaptations to perturbations. Lysine-specific histone demethylase 1A (KDM1A also known as LSD1), a FAD-dependent H3K4me1/2 and H3K9me1/2 demethylase, was found to be upregulated in several tumors and associated with a poor prognosis due to its ability to maintain CSCs staminal features. Here, we explored the potential role of KDM1A targeting in CRC by characterizing the effect of KDM1A silencing in differentiated and CRC stem cells (CRC-SCs). In CRC samples, KDM1A overexpression was associated with a worse prognosis, confirming its role as an independent negative prognostic factor of CRC. Consistently, biological assays such as methylcellulose colony formation, invasion, and migration assays demonstrated a significantly decreased self-renewal potential, as well as migration and invasion potential upon KDM1A silencing. Our untargeted multi-omics approach (transcriptomic and proteomic) revealed the association of KDM1A silencing with CRC-SCs cytoskeletal and metabolism remodeling towards a differentiated phenotype, supporting the role of KDM1A in CRC cells stemness maintenance. Also, KDM1A silencing resulted in up-regulation of miR-506-3p, previously reported to play a tumor-suppressive role in CRC. Lastly, loss of KDM1A markedly reduced 53BP1 DNA repair foci, implying the involvement of KDM1A in the DNA damage response. Overall, our results indicate that KDM1A impacts CRC progression in several non-overlapping ways, and therefore it represents a promising epigenetic target to prevent tumor relapse.

15.
Hum Mutat ; 33(4): 703-9, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22253195

RESUMO

Noonan syndrome (NS) is among the most common nonchromosomal disorders affecting development and growth. NS is genetically heterogeneous, being caused by germline mutations affecting various genes implicated in the RAS signaling network. This network transduces extracellular signals into intracellular biochemical and transcriptional responses controlling cell proliferation, differentiation, metabolism, and senescence. To explore the transcriptional consequences of NS-causing mutations, we performed global mRNA expression profiling on peripheral blood mononuclear cells obtained from 23 NS patients carrying heterozygous mutations in PTPN11 or SOS1. Gene expression profiling was also resolved in five subjects with Noonan-like syndrome with loose anagen hair (NS/LAH), a condition clinically related to NS and caused by an invariant mutation in SHOC2. Robust transcriptional signatures were found to specifically discriminate each of the three mutation groups from 21 age- and sex-matched controls. Despite the only partial overlap in terms of gene composition, the three signatures showed a notable concordance in terms of biological processes and regulatory circuits affected. These data establish expression profiling of peripheral blood mononuclear cells as a powerful tool to appreciate differential perturbations driven by germline mutations of transducers involved in RAS signaling and to dissect molecular mechanisms underlying NS and other RASopathies.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Síndrome de Noonan/genética , Proteína Tirosina Fosfatase não Receptora Tipo 11/genética , Proteína SOS1/genética , Estudos de Casos e Controles , Feminino , Perfilação da Expressão Gênica , Granuloma de Células Gigantes , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Leucócitos Mononucleares/fisiologia , Masculino , Mutação , Síndrome de Noonan/metabolismo , Proteína Tirosina Fosfatase não Receptora Tipo 11/metabolismo , Proteína SOS1/metabolismo , Transdução de Sinais , Transcrição Gênica , Proteínas ras/metabolismo
16.
BMC Genomics ; 13: 400, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22897927

RESUMO

BACKGROUND: In the last few years several studies have shown that Transposable Elements (TEs) in the human genome are significantly associated with Transcription Factor Binding Sites (TFBSs) and that in several cases their expansion within the genome led to a substantial rewiring of the regulatory network. Another important feature of the regulatory network which has been thoroughly studied is the combinatorial organization of transcriptional regulation. In this paper we combine these two observations and suggest that TEs, besides rewiring the network, also played a central role in the evolution of particular patterns of combinatorial gene regulation. RESULTS: To address this issue we searched for TEs overlapping Estrogen Receptor α (ERα) binding peaks in two publicly available ChIP-seq datasets from the MCF7 cell line corresponding to different modalities of exposure to estrogen. We found a remarkable enrichment of a few specific classes of Transposons. Among these a prominent role was played by MIR (Mammalian Interspersed Repeats) transposons. These TEs underwent a dramatic expansion at the beginning of the mammalian radiation and then stabilized. We conjecture that the special affinity of ERα for the MIR class of TEs could be at the origin of the important role assumed by ERα in Mammalians. We then searched for TFBSs within the TEs overlapping ChIP-seq peaks. We found a strong enrichment of a few precise combinations of TFBS. In several cases the corresponding Transcription Factors (TFs) were known cofactors of ERα, thus supporting the idea of a co-regulatory role of TFBS within the same TE. Moreover, most of these correlations turned out to be strictly associated to specific classes of TEs thus suggesting the presence of a well-defined "transposon code" within the regulatory network. CONCLUSIONS: In this work we tried to shed light into the role of Transposable Elements (TEs) in shaping the regulatory network of higher eukaryotes. To test this idea we focused on a particular transcription factor: the Estrogen Receptor α (ERα) and we found that ERα preferentially targets a well defined set of TEs and that these TEs host combinations of transcriptional regulators involving several of known co-regulators of ERα. Moreover, a significant number of these TEs turned out to be conserved between human and mouse and located in the vicinity (and thus candidate to be regulators) of important estrogen-related genes.


Assuntos
Elementos de DNA Transponíveis , Receptor alfa de Estrogênio/genética , Regulação da Expressão Gênica , Fatores de Transcrição/genética , Sequência de Bases , Sítios de Ligação , Genoma Humano , Humanos , Células MCF-7 , Anotação de Sequência Molecular , Dados de Sequência Molecular
17.
PLoS Comput Biol ; 7(3): e1001101, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21423718

RESUMO

MicroRNAs are endogenous non-coding RNAs which negatively regulate the expression of protein-coding genes in plants and animals. They are known to play an important role in several biological processes and, together with transcription factors, form a complex and highly interconnected regulatory network. Looking at the structure of this network, it is possible to recognize a few overrepresented motifs which are expected to perform important elementary regulatory functions. Among them, a special role is played by the microRNA-mediated feedforward loop in which a master transcription factor regulates a microRNA and, together with it, a set of target genes. In this paper we show analytically and through simulations that the incoherent version of this motif can couple the fine-tuning of a target protein level with an efficient noise control, thus conferring precision and stability to the overall gene expression program, especially in the presence of fluctuations in upstream regulators. Among the other results, a nontrivial prediction of our model is that the optimal attenuation of fluctuations coincides with a modest repression of the target expression. This feature is coherent with the expected fine-tuning function and in agreement with experimental observations of the actual impact of a wide class of microRNAs on the protein output of their targets. Finally, we describe the impact on noise-buffering efficiency of the cross-talk between microRNA targets that can naturally arise if the microRNA-mediated circuit is not considered as isolated, but embedded in a larger network of regulations.


Assuntos
Redes Reguladoras de Genes/genética , MicroRNAs/metabolismo , Biologia Computacional/métodos , Expressão Gênica , MicroRNAs/genética , Fatores de Transcrição/genética
18.
BioData Min ; 15(1): 23, 2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36175974

RESUMO

INTRODUCTION: Bladder cancer assessment with non-invasive gene expression signatures facilitates the detection of patients at risk and surveillance of their status, bypassing the discomforts given by cystoscopy. To achieve accurate cancer estimation, analysis pipelines for gene expression data (GED) may integrate a sequence of several machine learning and bio-statistical techniques to model complex characteristics of pathological patterns. METHODS: Numerical experiments tested the combination of GED preprocessing by discretization with tree ensemble embeddings and nonlinear dimensionality reductions to categorize oncological patients comprehensively. Modeling aimed to identify tumor stage and distinguish survival outcomes in two situations: complete and partial data embedding. This latter experimental condition simulates the addition of new patients to an existing model for rapid monitoring of disease progression. Machine learning procedures were employed to identify the most relevant genes involved in patient prognosis and test the performance of preprocessed GED compared to untransformed data in predicting patient conditions. RESULTS: Data embedding paired with dimensionality reduction produced prognostic maps with well-defined clusters of patients, suitable for medical decision support. A second experiment simulated the addition of new patients to an existing model (partial data embedding): Uniform Manifold Approximation and Projection (UMAP) methodology with uniform data discretization led to better outcomes than other analyzed pipelines. Further exploration of parameter space for UMAP and t-distributed stochastic neighbor embedding (t-SNE) underlined the importance of tuning a higher number of parameters for UMAP rather than t-SNE. Moreover, two different machine learning experiments identified a group of genes valuable for partitioning patients (gene relevance analysis) and showed the higher precision obtained by preprocessed data in predicting tumor outcomes for cancer stage and survival rate (six classes prediction). CONCLUSIONS: The present investigation proposed new analysis pipelines for disease outcome modeling from bladder cancer-related biomarkers. Complete and partial data embedding experiments suggested that pipelines employing UMAP had a more accurate predictive ability, supporting the recent literature trends on this methodology. However, it was also found that several UMAP parameters influence experimental results, therefore deriving a recommendation for researchers to pay attention to this aspect of the UMAP technique. Machine learning procedures further demonstrated the effectiveness of the proposed preprocessing in predicting patients' conditions and determined a sub-group of biomarkers significant for forecasting bladder cancer prognosis.

19.
PLoS One ; 17(8): e0273036, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36001607

RESUMO

The key role played by host-microbiota interactions on human health, disease onset and progression, and on host response to treatments has increasingly emerged in the latest decades. Indeed, dysbiosis has been associated to several human diseases such as obesity, diabetes, cancer and also neurodegenerative disease, such as Parkinson, Huntington and Alzheimer's disease (AD), although whether causative, consequence or merely an epiphenomenon is still under investigation. In the present study, we performed a metabologenomic analysis of stool samples from a mouse model of AD, the 3xTgAD. We found a significant change in the microbiota of AD mice compared to WT, with a longitudinal divergence of the F/B ratio, a parameter suggesting a gut dysbiosis. Moreover, AD mice showed a significant decrease of some amino acids, while data integration revealed a dysregulated production of desaminotyrosine (DAT) and dihydro-3-coumaric acid. Collectively, our data show a dysregulated gut microbiota associated to the onset and progression of AD, also indicating that a dysbiosis can occur prior to significant clinical signs, evidenced by early SCFA alterations, compatible with gut inflammation.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Doenças Neurodegenerativas , Animais , Modelos Animais de Doenças , Disbiose , Microbioma Gastrointestinal/fisiologia , Humanos , Camundongos
20.
Nat Commun ; 13(1): 5191, 2022 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-36057632

RESUMO

Epithelial-mesenchymal transition (EMT) is a complex and pivotal process involved in organogenesis and is related to several pathological processes, including cancer and fibrosis. During heart development, EMT mediates the conversion of epicardial cells into vascular smooth muscle cells and cardiac interstitial fibroblasts. Here, we show that the oncogenic transcription factor EB (TFEB) is a key regulator of EMT in epicardial cells and that its genetic overexpression in mouse epicardium is lethal due to heart defects linked to impaired EMT. TFEB specifically orchestrates the EMT-promoting function of transforming growth factor (TGF) ß, and this effect results from activated transcription of thymine-guanine-interacting factor (TGIF)1, a TGFß/Smad pathway repressor. The Tgif1 promoter is activated by TFEB, and in vitro and in vivo findings demonstrate its increased expression when Tfeb is overexpressed. Furthermore, Tfeb overexpression in vitro prevents TGFß-induced EMT, and this effect is abolished by Tgif1 silencing. Tfeb loss of function, similar to that of Tgif1, sensitizes cells to TGFß, inducing an EMT response to low doses of TGFß. Together, our findings reveal an unexpected function of TFEB in regulating EMT, which might provide insights into injured heart repair and control of cancer progression.


Assuntos
Transição Epitelial-Mesenquimal , Fator de Crescimento Transformador beta , Animais , Células Cultivadas , Transição Epitelial-Mesenquimal/fisiologia , Camundongos , Organogênese , Pericárdio/metabolismo , Fator de Crescimento Transformador beta/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA