Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Pediatr Res ; 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38438551

RESUMO

BACKGROUND: Patients with severe congenital heart disease (CHD) are at risk for neurodevelopmental impairment. An abnormal cerebral blood supply caused by the altered cardiac physiology may limit optimal brain development. The aim of this study was to evaluate the effect of a systemic-to-pulmonary shunt, aortic arch obstruction and arterial oxygen saturation on cerebral perfusion in patients with severe CHD. METHODS: Patients with severe CHD requiring cardiac surgery within the first six weeks of life, who underwent pre- and/or postoperative brain magnetic resonance imaging (MRI), and healthy controls with one postnatal scan were included. Cerebral perfusion in deep and cortical gray matter was assessed by pseudocontinuous arterial spin labeling MRI. RESULTS: We included 59 CHD and 23 healthy control scans. The presence of a systemic-to-pulmonary shunt was associated with decreased perfusion in cortical (p = 0.003), but not in deep gray matter (p = 0.031). No evidence for an effect of aortic arch obstruction and arterial oxygen saturation on cerebral perfusion was found. After adjusting for hemodynamic and oxygen saturation parameters, deep (p = 0.018) and cortical (p = 0.012) gray matter perfusion was increased in patients with CHD compared to controls. CONCLUSION: We detected regional differences in compensation to the cerebral steal effect in patients with severe CHD. IMPACT: Patients with severe congenital heart disease (CHD) have altered postnatal brain hemodynamics. A systemic-to-pulmonary shunt was associated with decreased perfusion in cortical gray matter but preserved perfusion in deep gray matter, pointing towards regional differences in compensation to the cerebral steal effect. No effects of aortic arch obstruction and arterial oxygenation on cerebral perfusion were seen. Cerebral perfusion was increased in patients with CHD compared to healthy controls after adjusting for hemodynamic alterations and oxygen saturation. To improve neuroprotection and neurodevelopmental outcomes, it is important to increase our understanding of the factors influencing cerebral perfusion in neonates with severe CHD.

2.
Neuroimage ; 268: 119869, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36639004

RESUMO

Altered brain connectivity between regions of the reading network has been associated with reading difficulties. However, it remains unclear whether connectivity differences between children with dyslexia (DYS) and those with typical reading skills (TR) are specific to reading impairments or to reading experience. In this functional MRI study, 132 children (M = 10.06 y, SD = 1.46) performed a phonological lexical decision task. We aimed to disentangle (1) disorder-specific from (2) experience-related differences in effective connectivity and to (3) characterize the development of DYS and TR. We applied dynamic causal modeling to age-matched (ndys = 25, nTR = 35) and reading-level-matched (ndys = 25, nTR = 22) groups. Developmental effects were assessed in beginning and advanced readers (TR: nbeg = 48, nadv = 35, DYS: nbeg = 24, nadv = 25). We show that altered feedback connectivity between the inferior parietal lobule and the visual word form area (VWFA) during print processing can be specifically attributed to reading impairments, because these alterations were found in DYS compared to both the age-matched and reading-level-matched TR. In contrast, feedforward connectivity from the VWFA to parietal and frontal regions characterized experience in TR and increased with age and reading skill. These directed connectivity findings pinpoint disorder-specific and experience-dependent alterations in the brain's reading network.


Assuntos
Mapeamento Encefálico , Dislexia , Humanos , Criança , Encéfalo , Dislexia/diagnóstico por imagem , Lobo Parietal , Linguística , Imageamento por Ressonância Magnética
3.
Cortex ; 172: 185-203, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38354469

RESUMO

The specialization of left ventral occipitotemporal brain regions to automatically process word forms develops with reading acquisition and is diminished in children with poor reading skills (PR). Using a fast periodic visual oddball stimulation (FPVS) design during electroencephalography (EEG), we examined the level of sensitivity and familiarity to word form processing in ninety-two children in 2nd and 3rd grade with varying reading skills (n = 35 for PR, n = 40 for typical reading skills; TR). To test children's level of "sensitivity", false font (FF) and consonant string (CS) oddballs were embedded in base presentations of word (W) stimuli. "Familiarity" was examined by presenting letter string oddballs with increasing familiarity (CS, pseudoword - PW, W) in FF base stimuli. Overall, our results revealed stronger left-hemispheric coarse sensitivity effects ("FF in W" > "CS in W") in TR than in PR in both topographic and oddball frequency analyses. Further, children distinguished between orthographically legal and illegal ("W/PW in FF" > "CS in FF") but not yet between lexical and non-lexical ("W in FF" vs "PW in FF") word forms. Although both TR and PR exhibit visual sensitivity and can distinguish between orthographically legal and illegal letter strings, they still struggle with nuanced lexical distinctions. Moreover, the strength of sensitivity is linked to reading proficiency. Our work adds to established knowledge in the field to characterize the relationship between print tuning and reading skills and suggests differences in the developmental progress to automatically process word forms.


Assuntos
Eletroencefalografia , Leitura , Criança , Humanos , Estimulação Luminosa , Encéfalo , Mapeamento Encefálico , Potenciais Evocados/fisiologia , Reconhecimento Visual de Modelos/fisiologia
4.
Front Neurosci ; 17: 1252850, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38130698

RESUMO

Introduction: Despite established knowledge on the morphological and functional asymmetries in the human brain, the understanding of how brain asymmetry patterns change during late fetal to neonatal life remains incomplete. The goal of this study was to characterize the dynamic patterns of inter-hemispheric brain asymmetry over this critically important developmental stage using longitudinally acquired MRI scans. Methods: Super-resolution reconstructed T2-weighted MRI of 20 neurotypically developing participants were used, and for each participant fetal and neonatal MRI was acquired. To quantify brain morphological changes, deformation-based morphometry (DBM) on the longitudinal MRI scans was utilized. Two registration frameworks were evaluated and used in our study: (A) fetal to neonatal image registration and (B) registration through a mid-time template. Developmental changes of cerebral asymmetry were characterized as (A) the inter-hemispheric differences of the Jacobian determinant (JD) of fetal to neonatal morphometry change and the (B) time-dependent change of the JD capturing left-right differences at fetal or neonatal time points. Left-right and fetal-neonatal differences were statistically tested using multivariate linear models, corrected for participants' age and sex and using threshold-free cluster enhancement. Results: Fetal to neonatal morphometry changes demonstrated asymmetry in the temporal pole, and left-right asymmetry differences between fetal and neonatal timepoints revealed temporal changes in the temporal pole, likely to go from right dominant in fetal to a bilateral morphology in neonatal timepoint. Furthermore, the analysis revealed right-dominant subcortical gray matter in neonates and three clusters of increased JD values in the left hemisphere from fetal to neonatal timepoints. Discussion: While these findings provide evidence that morphological asymmetry gradually emerges during development, discrepancies between registration frameworks require careful considerations when using DBM for longitudinal data of early brain development.

5.
Psychophysiology ; 55(8): e13073, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29524234

RESUMO

Despite its evolutionary and clinical significance, appetitive conditioning has been rarely investigated in humans. It has been proposed that this discrepancy might stem from the difficulty in finding suitable appetitive stimuli that elicit strong physiological responses. However, this might also be due to a possible lack of sensitivity of the psychophysiological measures commonly used to index human appetitive conditioning. Here, we investigated whether the postauricular reflex-a vestigial muscle microreflex that is potentiated by pleasant stimuli relative to neutral and unpleasant stimuli-may provide a valid psychophysiological indicator of appetitive conditioning in humans. To this end, we used a delay differential appetitive conditioning procedure, in which a neutral stimulus was contingently paired with a pleasant odor (CS+), while another neutral stimulus was not associated with any odor (CS-). We measured the postauricular reflex, the startle eyeblink reflex, and skin conductance response (SCR) as learning indices. Taken together, our results indicate that the postauricular reflex was potentiated in response to the CS+ compared with the CS-, whereas this potentiation extinguished when the pleasant odor was no longer delivered. In contrast, we found no evidence for startle eyeblink reflex attenuation in response to the CS+ relative to the CS-, and no effect of appetitive conditioning was observed on SCR. These findings suggest that the postauricular reflex is a sensitive measure of human appetitive conditioning and constitutes a valuable tool for further shedding light on the basic mechanisms underlying emotional learning in humans.


Assuntos
Comportamento Apetitivo , Condicionamento Clássico , Pavilhão Auricular/fisiologia , Reflexo , Estimulação Acústica , Adolescente , Adulto , Piscadela , Feminino , Resposta Galvânica da Pele , Humanos , Masculino , Odorantes , Estimulação Física , Reflexo de Sobressalto , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA