Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Opt Express ; 31(7): 11536-11546, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37155786

RESUMO

We use a Fourier-transform based method to investigate the magnitude and robustness of mode selectivity in as-cleaved discrete-mode semiconductor lasers, where a small number of refractive index perturbations are introduced into a Fabry-Pérot laser cavity. Three exemplar index perturbation patterns are considered. Our results demonstrate the capability to significantly improve modal selectivity by choosing a perturbation distribution function that avoids placing perturbations near to the cavity centre. Our analysis also highlights the ability to select functions that can increase the yield despite facet phase errors introduced during device fabrication.

2.
Opt Express ; 31(22): 36273-36280, 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-38017782

RESUMO

The integration of compact high-bandwidth III-V active devices in a scalable manner is highly significant for Silicon-on-insulator (SOI) photonic integrated circuits. To address this, we demonstrate the integration of pre-fabricated 21 × 57 µm2 InGaAs photodetector (PD) coupons with a thickness of 675 nm to a 500 nm SOI platform using a direct bonding micro-transfer printing process. The common devices are coupled to the Si waveguides via butt, grating and evanescent coupling schemes with responsivities of 0.13, 0.3 and 0.6 A/W respectively, in line with simulations. The thin device facilitates simplified high-speed connections without the need for an interlayer dielectric. A back-to-back data communication rate of 50 Gb/s is achieved with on-off keying and with post processing of four-level pulse-amplitude modulation (PAM4) 100 Gb/s is realized. Potentially, around 1 million devices per 75 mm InP wafer can be attained. The integration of compact PDs exhibited in this work can be extended to modulators and lasers in the future.

3.
Opt Express ; 29(11): 16611-16618, 2021 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-34154220

RESUMO

We demonstrate laser power conversion using an edge-coupled waveguide configuration. A laser with an emission energy of 0.87 eV (1427 nm) optically pumps a second with an emission energy of 0.80 eV (1540 nm), achieving the maximum possible open circuit voltage of 0.83 V due to optically pumped lasing. A fiber to device power conversion efficiency of 33% is achieved with internal power conversion efficiency ranging from 57% to 51%. The voltage at maximum power is 0.6 V, which is a record for the wavelength range. The same optically pumped device is used for effectively power-free 500 Mbps upstream data transmission, enabling compact powering and signaling for emerging applications in minimally invasive medical interventions and remote photonics.

4.
Opt Express ; 28(22): 32793-32801, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114956

RESUMO

We report on single-mode C-band distributed feedback lasers fabricated through micro-transfer-printing of semiconductor optical amplifier coupons fabricated on a InP source wafer onto a silicon-on-insulator photonic circuit. The coupons are micro-transfer printed on quarter-wave shifted gratings defined in SiN deposited on the silicon waveguide. Alignment-tolerant adiabatic tapers are used to efficiently couple light from the hybrid III-V/Si waveguide to the Si waveguide circuit. 80 mA threshold current and a maximum single-sided waveguide-coupled output power above 6.9 mW is obtained at 20 °C. Single mode operation around 1558 nm with > 33 dB side mode suppression ratio is demonstrated. Micro-transfer printing-based heterogeneous integration is promising for the wafer-level integration of advanced laser sources on complex silicon photonic integrated circuit platforms without changing the foundry process flow.

5.
Opt Express ; 28(14): 21275-21285, 2020 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-32680172

RESUMO

We demonstrate waveguide-detector coupling through the integration of GaAs p-i-n photodiodes (PDs) on top of silicon nitride grating couplers (GCs) by means of transfer-printing. Both single device and arrayed printing is demonstrated. The photodiodes exhibit dark currents below 20 pA and waveguide-referred responsivities of up to 0.30 A/W at 2V reverse bias, corresponding to an external quantum efficiency of 47% at 860 nm. We have integrated the detectors on top of a 10-channel on-chip arrayed waveguide grating (AWG) spectrometer, made in the commercially available imec BioPIX-300 nm platform.

6.
Opt Express ; 26(7): 8821-8830, 2018 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-29715844

RESUMO

An electrically pumped DFB laser integrated on and coupled to a silicon waveguide circuit is demonstrated by transfer printing a 40 × 970 µm2 III-V coupon, defined on a III-V epitaxial wafer. A second-order grating defined in the silicon device layer with a period of 477 nm and a duty cycle of 75% was used for realizing single mode emission, while an adiabatic taper structure is used for coupling to the silicon waveguide layer. 18 mA threshold current and a maximum single-sided waveguide-coupled output power above 2 mW is obtained at 20°C. Single mode operation around 1550 nm with > 40 dB side mode suppression ratio (SMSR) is realized. This new integration approach allows for the very efficient use of the III-V material and the massively parallel integration of these coupons on a silicon photonic integrated circuit wafer. It also allows for the intimate integration of III-V opto-electronic components based on different epitaxial layer structures.

7.
Opt Express ; 25(5): 5244-5254, 2017 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-28380788

RESUMO

Transition metal nitrides are promising alternative plasmonic materials to noble metals for data storage applications as they exhibit localized surface plasmon resonances and have high melting temperatures. Here, angle dependent spectral measurements of the plasmonic resonances of nanodisk arrays made from titanium nitride are examined. Polarized light is used to excite the quadrupole and higher order resonance plasmonic modes which are required in the state-of-the-art designs of near-field transducers used in plasmonic enhanced magnetic recording. Numerical simulations compare the energy distribution and absorption efficiencies for different sized Au and Ti nanodisks. A high electric field enhancement is calculated at the termination of a lollipop plasmonic transducer made of titanium nitride which is shifted to longer wavelengths when compared with an Au transducer of the same dimensions. This, together with its outstanding material properties makes TiN a favourable material for data storage applications.

8.
Opt Express ; 25(13): 14290-14299, 2017 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-28789014

RESUMO

A 4-channel silicon photonics transceiver array for Point-to-Point (P2P) fiber-to-the-home (FTTH) optical networks at the central office (CO) side is demonstrated. A III-V O-band photodetector array was integrated onto the silicon photonic transmitter through transfer printing technology, showing a polarization-independent responsivity of 0.39 - 0.49 A/W in the O-band. The integrated PDs (30 × 40 µm2 mesa) have a 3 dB bandwidth of 11.5 GHz at -3 V bias. Together with high-speed C-band silicon ring modulators whose bandwidth is up to 15 GHz, operation of the transceiver array at 10 Gbit/s is demonstrated. The use of transfer printing for the integration of the III-V photodetectors allows for an efficient use of III-V material and enables the scalable integration of III-V devices on silicon photonics wafers, thereby reducing their cost.

9.
Nano Lett ; 16(12): 7822-7828, 2016 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-27960504

RESUMO

Hybrid plasmonic lasers provide deep subwavelength optical confinement, strongly enhanced light-matter interaction and together with nanoscale footprint promise new applications in optical communication, biosensing, and photolithography. The subwavelength hybrid plasmonic lasers reported so far often use bottom-up grown nanowires, nanorods, and nanosquares, making it difficult to integrate these devices into industry-relevant high density plasmonic circuits. Here, we report the first experimental demonstration of AlGaInP based, red-emitting hybrid plasmonic lasers at room temperature using lithography based fabrication processes. Resonant cavities with deep subwavelength 2D and 3D mode confinement of λ2/56 and λ3/199, respectively, are demonstrated. A range of cavity geometries (waveguides, rings, squares, and disks) show very low lasing thresholds of 0.6-1.8 mJ/cm2 with wide gain bandwidth (610 nm-685 nm), which are attributed to the heterogeneous geometry of the gain material, the optimized etching technique, and the strong overlap of the gain material with the plasmonic modes. Most importantly, we establish the connection between mode confinements and enhanced absorption and stimulated emission, which plays critical roles in maintaining low lasing thresholds at extremely small hybrid plasmonic cavities. Our results pave the way for the further integration of dense arrays of hybrid plasmonic lasers with optical and electronic technology platforms.

10.
Opt Express ; 24(6): 5846-54, 2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27136781

RESUMO

A 1x2 multi-mode-interferometer (MMI) laser diode was successfully designed and fabricated, which demonstrated three coherent outputs of tunable single frequency emission with more than 30dB side mode suppression ratio (SMSR), a tuning range of 25nm in C and L band, as well as 750 kHz linewidth. This 1x2 MMI laser could be expanded to more advanced configurations such as 1xN or MxN (M≥1, N>2) MMI lasers to achieve a multiple coherent output source. In addition, these lasers do not require material regrowth and high resolution gratings which can significantly increase the yield and reduce the cost.

11.
Opt Lett ; 41(24): 5752-5755, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27973525

RESUMO

We report on the electrical-to-optical modulation bandwidths of non-mesa-etched semipolar (112¯2) InGaN/GaN light-emitting diodes (LEDs) operating at 430-450 nm grown on high-quality (112¯2) GaN templates, which were prepared on patterned (101¯2) r-plane sapphire substrates. The measured frequency response at -3 dB of the LEDs was up to 1 GHz. A high back-to-back data transmission rate of above 2.4 Gbps is demonstrated using a non-return-to-zero on-off keying modulation scheme. This indicates that (112¯2) LEDs are suitable gigabit per second data transmission for use in visible-light communication applications.

12.
Sci Technol Adv Mater ; 17(1): 398-409, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27877891

RESUMO

Resonant propagating waves created on the surface of a dielectric multilayer stack, called Bloch surface waves (BSW), can be designed for high sensitivity monitoring of the adjacent refractive index as an alternative platform to the metal-based surface plasmon resonance (SPR) sensing. The resonant wavelength and polarization can be designed by engineering of the dielectric layers unlike the fixed resonance of SPR, while the wide bandwidth low loss of dielectrics permits sharper resonances, longer propagation lengths and thus their use in waveguiding devices. The transparency of the dielectrics allows the excitation and monitoring of surface-bound fluorescent molecules. We review the recent developments in this technology. We show the advantages that can be obtained by using high index contrast layered structures. Operating at 1550 nm wavelengths will allow the BSW sensors to be implemented in the silicon photonics platform where active waveguiding can be used in the realization of compact planar integrated circuits for multi-parameter sensing.

13.
Opt Express ; 23(11): 14630-9, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26072823

RESUMO

Single and multi-layer passive optical interconnects using single mode polymer waveguides are demonstrated using UV nano-imprint lithography. The fabrication tolerances associated with imprint lithography are investigated and we show a way to experimentally quantify a small variation in index contrast between core and cladding of fabricated devices. 1x2 splitting devices based on directional couplers and multimode interference interferometers are demonstrated to have less than 0.45 dB insertion loss with 0.02 ± 0.01 dB power imbalance between the outputs. We demonstrate an 'optical via' with an insertion loss less than 0.45 dB to transfer light from one optical signal plane to another. A 1x4 two-dimensional optical port is experimentally demonstrated to spatially split the input power with an insertion loss of 1.2 dB.

14.
Phys Status Solidi B Basic Solid State Phys ; 252(5): 1104-1108, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-26212392

RESUMO

We report on the growth of semi-polar GaN (11[Formula: see text]2) templates on patterned Si (113) substrates. Trenches were etched in Si (113) using KOH to expose Si {111} sidewalls. Subsequently an AlN layer to prevent meltback etching, an AlGaN layer for stress management, and finally two GaN layers were deposited. Total thicknesses up to 5 [Formula: see text]m were realised without cracks in the layer. Transmission electron microscopy showed that most dislocations propagate along [0001] direction and hence can be covered by overgrowth from the next trench. The defect densities were below [Formula: see text] and stacking fault densities less than 100 cm [Formula: see text]. These numbers are similar to reports on patterned r-plane sapphire. Typical X-ray full width at half maximum (FHWM) were 500" for the asymmetric (00.6) and 450" for the (11.2) reflection. These FHWMs were 50 % broader than reported for patterned r-plane sapphire which is attributed to different defect structures and total thicknesses. The surface roughness shows strong variation on templates. For the final surface roughness the roughness of the sidewalls of the GaN ridges at the time of coalescence are critical.

15.
J Neurosci ; 33(16): 7020-6, 2013 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-23595759

RESUMO

BACE1 is the rate-limiting enzyme that cleaves amyloid precursor protein (APP) to produce the amyloid ß peptides that accumulate in Alzheimer's disease (AD). BACE1, which is elevated in AD patients and APP transgenic mice, also cleaves the ß2-subunit of voltage-gated sodium channels (Navß2). Although increased BACE1 levels are associated with Navß2 cleavage in AD patients, whether Navß2 cleavage occurs in APP mice had not yet been examined. Such a finding would be of interest because of its potential impact on neuronal activity: previous studies demonstrated that BACE1-overexpressing mice exhibit excessive cleavage of Navß2 and reduced sodium current density, but the phenotype associated with loss of function mutations in either Navß-subunits or pore-forming α-subunits is epilepsy. Because mounting evidence suggests that epileptiform activity may play an important role in the development of AD-related cognitive deficits, we examined whether enhanced cleavage of Navß2 occurs in APP transgenic mice, and whether it is associated with aberrant neuronal activity and cognitive deficits. We found increased levels of BACE1 expression and Navß2 cleavage fragments in cortical lysates from APP transgenic mice, as well as associated alterations in Nav1.1α expression and localization. Both pyramidal neurons and inhibitory interneurons exhibited evidence of increased Navß2 cleavage. Moreover, the magnitude of alterations in sodium channel subunits was associated with aberrant EEG activity and impairments in the Morris water maze. Together, these results suggest that altered processing of voltage-gated sodium channels may contribute to aberrant neuronal activity and cognitive deficits in AD.


Assuntos
Doença de Alzheimer/complicações , Transtornos Cognitivos/etiologia , Transtornos Cognitivos/patologia , Neurônios/metabolismo , Canais de Sódio/metabolismo , Doença de Alzheimer/genética , Secretases da Proteína Precursora do Amiloide/metabolismo , Precursor de Proteína beta-Amiloide/genética , Animais , Ácido Aspártico Endopeptidases/metabolismo , Biotinilação , Modelos Animais de Doenças , Eletroencefalografia , Regulação da Expressão Gênica/genética , Glutamato Descarboxilase/metabolismo , Humanos , Aprendizagem em Labirinto/fisiologia , Camundongos , Camundongos Transgênicos , Mutação/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/patologia , Neuropeptídeo Y/genética , Neuropeptídeo Y/metabolismo
16.
Opt Lett ; 39(21): 6213-6, 2014 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-25361317

RESUMO

A sub-wavelength grating-based photonic crystal sensor is designed to excite two spectrally and spatially different guided mode resonances that have distinctive electric field distributions. We present and validate the uni-polarized dual resonance approach to separating bulk index perturbations from surface-binding events in a single measurement by monitoring the resonance wavelength shifts. This self-referencing method will reduce errors in the measurement of biomolecule binding events on sensor surfaces in a perturbed environmental background.


Assuntos
Técnicas Biossensoriais/métodos , Fenômenos Ópticos , Fótons , Propriedades de Superfície
17.
Nanotechnology ; 25(35): 355301, 2014 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-25116111

RESUMO

Wafer-scale nano-fabrication of silicon nitride (Si x N y ) photonic crystal (PhC) structures on glass (quartz) substrates is demonstrated using a thin (30 nm) chromium (Cr) layer as the hard mask for transferring the electron beam lithography (EBL) defined resist patterns. The use of the thin Cr layer not only solves the charging effect during the EBL on the insulating substrate, but also facilitates high aspect ratio PhCs by acting as a hard mask while deep etching into the Si x N y . A very high aspect ratio of 10:1 on a 60 nm wide grating structure has been achieved while preserving the quality of the flat top of the narrow lines. The presented nano-fabrication method provides PhC structures necessary for a high quality optical response. Finally, we fabricated a refractive index based PhC sensor which shows a sensitivity of 185 nm per RIU.

18.
Neuroscience ; 548: 69-80, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38697464

RESUMO

Major depressive disorder is one of the most prevalent psychiatric diseases, and up to 30-40% of patients remain symptomatic despite treatment. Novel therapies are sorely needed, and animal models may be used to elucidate fundamental neurobiological processes that contribute to human disease states. We conducted a systematic review of current preclinical approaches to investigating treatment resistance with the goal of describing a path forward for improving our understanding of treatment resistant depression. We conducted a broad literature search to identify studies relevant to the preclinical investigation of treatment resistant depression. We followed PRISMA (Preferred Reporting Items for Systemic Reviews and Meta-Analyses) guidelines and included all relevant studies. We identified 467 studies in our initial search. Of these studies, we included 69 in our systematic review after applying our inclusion/exclusion criteria. We identified 10 broad strategies for investigating treatment resistance in animal models. Stress hormone administration was the most commonly used model, and the most common behavioral test was the forced swim test. We systematically identified and reviewed current approaches for gaining insight into the neurobiology underlying treatment resistant depression using animal models. Each approach has its advantages and disadvantages, but all require careful consideration of their potential limitations regarding therapeutic translation. An enhanced understanding of treatment resistant depression is sorely needed given the burden of disease and lack of effective therapies.


Assuntos
Antidepressivos , Transtorno Depressivo Resistente a Tratamento , Modelos Animais de Doenças , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Transtorno Depressivo Resistente a Tratamento/tratamento farmacológico , Humanos , Transtorno Depressivo Maior/tratamento farmacológico
19.
ACS Appl Mater Interfaces ; 16(8): 10996-11002, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38349800

RESUMO

The integration of dissimilar semiconductor materials holds immense potential for harnessing their complementary properties in novel applications. However, achieving such combinations through conventional heteroepitaxy or wafer bonding techniques presents significant challenges. In this research, we present a novel approach involving the direct bonding of InGaAs-based p-i-n membranes with GaN, facilitated by van der Waals forces and microtransfer printing technology. The resulting n-InP/n-GaN heterojunction was rigorously characterized through electrical measurements, with a comprehensive investigation into the impact of various surface treatments on device performance. The obtained InGaAs/GaN photodetector demonstrates remarkable electrical properties and exhibits a high optical responsivity of 0.5 A/W at the critical wavelength of 1550 nm wavelength. This pioneering work underscores the viability of microtransfer printing technology in realizing large lattice-mismatched heterojunction devices, thus expanding the horizons of semiconductor device applications.

20.
Sci Rep ; 14(1): 11110, 2024 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-38750033

RESUMO

A novel programmable implantable neurostimulation platform based on photonic power transfer has been developed for various clinical applications with the main focus of being safe to use with MRI scanners. The wires usually conveying electrical current from the neurostimulator to the electrodes are replaced by optical fibers. Photovoltaic cells at the tip of the fibers convert laser light to biphasic electrical impulses together with feedback signals with 54% efficiency. Furthermore, a biocompatible, implantable and ultra-flexible optical lead was developed including custom optical fibers. The neurostimulator platform incorporates advanced signal processing and optical physiological sensing capabilities thanks to a hermetically sealed transparent nonmetallic casing. Skin transparency also allowed the development of a high-speed optical transcutaneous communication channel. This implantable neurostimulation platform was first adapted to a vagus nerve stimulator for the treatment of epilepsy. This neurostimulator has been designed to fulfill the requirements of a class III long-term implantable medical device. It has been proven compliant with standard ISO/TS10974 for 1.5 T and 3 T MRI scanners. The device poses no related threat and patients can safely undergo MRI without specific or additional precautions. Especially, the RF induced heating near the implant remains below 2 °C whatever the MRI settings used. The main features of this unique advanced neurostimulator and its architecture are presented. Its functional performance is evaluated, and results are described with a focus on optoelectronics aspects and MRI safety.


Assuntos
Neuroestimuladores Implantáveis , Imageamento por Ressonância Magnética , Imageamento por Ressonância Magnética/métodos , Imageamento por Ressonância Magnética/efeitos adversos , Humanos , Desenho de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA