Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(20): e2217635120, 2023 05 16.
Artigo em Inglês | MEDLINE | ID: mdl-37155847

RESUMO

Myelin repair is an unrealized therapeutic goal in the treatment of multiple sclerosis (MS). Uncertainty remains about the optimal techniques for assessing therapeutic efficacy and imaging biomarkers are required to measure and corroborate myelin restoration. We analyzed myelin water fraction imaging from ReBUILD, a double-blind, randomized placebo-controlled (delayed treatment) remyelination trial, that showed a significant reduction in VEP latency in patients with MS. We focused on brain regions rich in myelin. Fifty MS subjects in two arms underwent 3T MRI at baseline and months 3 and 5. Half of the cohort was randomly assigned to receive treatment from baseline through 3 mo, whereas the other half received treatment from 3 mo to 5 mo post-baseline. We computed myelin water fraction changes occurring in normal-appearing white matter of corpus callosum, optic radiations, and corticospinal tracts. An increase in myelin water fraction was documented in the normal-appearing white matter of the corpus callosum, in correspondence with the administration of the remyelinating treatment clemastine. This study provides direct, biologically validated imaging-based evidence of medically induced myelin repair. Moreover, our work strongly suggests that significant myelin repair occurs outside of lesions. We therefore propose myelin water fraction within the normal-appearing white matter of the corpus callosum as a biomarker for clinical trials looking at remyelination.


Assuntos
Esclerose Múltipla , Remielinização , Substância Branca , Humanos , Corpo Caloso/diagnóstico por imagem , Corpo Caloso/patologia , Esclerose Múltipla/diagnóstico por imagem , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/patologia , Encéfalo/patologia , Bainha de Mielina/patologia , Substância Branca/diagnóstico por imagem , Substância Branca/patologia , Imageamento por Ressonância Magnética/métodos , Água , Biomarcadores
2.
Glia ; 72(8): 1469-1483, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38771121

RESUMO

Myelination is the terminal step in a complex and precisely timed program that orchestrates the proliferation, migration and differentiation of oligodendroglial cells. It is thought that Sonic Hedgehog (Shh) acting on Smoothened (Smo) participates in regulating this process, but that these effects are highly context dependent. Here, we investigate oligodendroglial development and remyelination from three specific transgenic lines: NG2-CreERT2 (control), Smofl/fl/NG2-CreERT2 (loss of function), and SmoM2/NG2-CreERT2 (gain of function), as well as pharmacological manipulation that enhance or inhibit the Smo pathway (Smoothened Agonist (SAG) or cyclopamine treatment, respectively). To explore the effects of Shh/Smo on differentiation and myelination in vivo, we developed a highly quantifiable model by transplanting oligodendrocyte precursor cells (OPCs) in the retina. We find that myelination is greatly enhanced upon cyclopamine treatment and hypothesize that Shh/Smo could promote OPC proliferation to subsequently inhibit differentiation. Consistent with this hypothesis, we find that the genetic activation of Smo significantly increased numbers of OPCs and decreased oligodendrocyte differentiation when we examined the corpus callosum during development and after cuprizone demyelination and remyelination. However, upon loss of function with the conditional ablation of Smo, myelination in the same scenarios are unchanged. Taken together, our present findings suggest that the Shh pathway is sufficient to maintain OPCs in an undifferentiated state, but is not necessary for myelination and remyelination.


Assuntos
Diferenciação Celular , Proteínas Hedgehog , Camundongos Transgênicos , Bainha de Mielina , Células Precursoras de Oligodendrócitos , Receptor Smoothened , Animais , Proteínas Hedgehog/metabolismo , Células Precursoras de Oligodendrócitos/metabolismo , Células Precursoras de Oligodendrócitos/efeitos dos fármacos , Receptor Smoothened/metabolismo , Receptor Smoothened/genética , Bainha de Mielina/metabolismo , Diferenciação Celular/fisiologia , Diferenciação Celular/efeitos dos fármacos , Alcaloides de Veratrum/farmacologia , Camundongos , Remielinização/fisiologia , Remielinização/efeitos dos fármacos , Oligodendroglia/metabolismo , Oligodendroglia/efeitos dos fármacos , Oligodendroglia/fisiologia , Camundongos Endogâmicos C57BL , Transdução de Sinais/fisiologia , Transdução de Sinais/efeitos dos fármacos
3.
Brain ; 145(11): 3943-3952, 2022 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-35678509

RESUMO

Many biomarkers in clinical neuroscience lack pathological certification. This issue is potentially a significant contributor to the limited success of neuroprotective and neurorestorative therapies for human neurological disease-and is evident even in areas with therapeutic promise such as myelin repair. Despite the identification of promising remyelinating candidates, biologically validated methods to demonstrate therapeutic efficacy or provide robust preclinical evidence of remyelination in the CNS are lacking. Therapies with potential to remyelinate the CNS constitute one of the most promising and highly anticipated therapeutic developments in the pipeline to treat multiple sclerosis and other demyelinating diseases. The optic nerve has been proposed as an informative pathway to monitor remyelination in animals and human subjects. Recent clinical trials using visual evoked potential have had promising results, but without unequivocal evidence about the cellular and molecular basis for signal changes on visual evoked potential, the interpretation of these trials is constrained. The visual evoked potential was originally developed and used in the clinic as a diagnostic tool but its use as a quantitative method for assessing therapeutic response requires certification of its biological specificity. Here, using the tools of experimental pathology we demonstrate that quantitative measurements of myelination using both histopathological measures of nodal structure and ultrastructural assessments correspond to visual evoked potential latency in both inflammatory and chemical models of demyelination. Visual evoked potential latency improves after treatment with a tool remyelinating compound (clemastine), mirroring both quantitative and qualitative myelin assessment. Furthermore, clemastine does not improve visual evoked potential latency following demyelinating injury when administered to a transgenic animal incapable of forming new myelin. Therefore, using the capacity for therapeutic enhancement and biological loss of function we demonstrate conclusively that visual evoked potential measures myelin status and is thereby a validated tool for preclinical verification of remyelination.


Assuntos
Esclerose Múltipla , Remielinização , Humanos , Animais , Potenciais Evocados Visuais , Clemastina/uso terapêutico , Bainha de Mielina/metabolismo , Esclerose Múltipla/patologia , Biomarcadores/metabolismo
4.
Ann Neurol ; 89(6): 1234-1239, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33704815

RESUMO

Although Epstein-Barr virus (EBV) is hypothesized to be a prerequisite for multiple sclerosis (MS), up to 15% of children with a diagnosis of MS were reported to be EBV-seronegative. When re-evaluating 25 EBV-seronegative children out of 189 pediatric patients with a diagnosis of clinically isolated syndrome/MS, we found anti-myelin oligodendrocyte glycoprotein (MOG) antibody in 11 of 25 (44%) EBV-seronegative but only 9 of 164 (5.5%, p < 0.001) EBV-seropositive patients. After critical review, MS remained a plausible diagnosis in only 4 of 14 EBV-seronegative/MOG antibody-negative patients. In children with an MS-like presentation, EBV seronegativity should alert clinicians to consider diagnoses other than MS, especially MOG-antibody disease. ANN NEUROL 2021;89:1234-1239.


Assuntos
Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/diagnóstico , Infecções por Vírus Epstein-Barr/complicações , Esclerose Múltipla/diagnóstico , Esclerose Múltipla/virologia , Adolescente , Autoanticorpos/imunologia , Autoantígenos/imunologia , Criança , Pré-Escolar , Doenças Autoimunes Desmielinizantes do Sistema Nervoso Central/imunologia , Humanos , Masculino , Glicoproteína Mielina-Oligodendrócito/imunologia
5.
Artigo em Inglês | MEDLINE | ID: mdl-35710320

RESUMO

BACKGROUND: Chronic demyelination is a major contributor to axonal vulnerability in multiple sclerosis (MS). Therefore, remyelination could provide a potent neuroprotective strategy. The ReBUILD trial was the first study showing evidence for successful remyelination following treatment with clemastine in people with MS (pwMS) with no evidence of disease activity or progression (NEDAP). Whether remyelination was associated with neuroprotection remains unexplored. METHODS: Plasma neurofilament light chain (NfL) levels were measured from ReBUILD trial's participants. Mixed linear effect models were fit for individual patients, epoch and longitudinal measurements to compare NfL concentrations between samples collected during the active and placebo treatment period. RESULTS: NfL concentrations were 9.6% lower in samples collected during the active treatment with clemastine (n=53, geometric mean=6.33 pg/mL) compared to samples collected during treatment with placebo (n=73, 7.00 pg/mL) (B=-0.035 [-0.068 to -0.001], p=0.041). Applying age- and body mass index-standardised NfL Z-scores and percentiles revealed similar results (0.04 vs 0.35, and 27.5 vs 33.3, p=0.023 and 0.042, respectively). Higher NfL concentrations were associated with more delayed P100 latencies (B=1.33 [0.26 to 2.41], p=0.015). In addition, improvement of P100 latencies between visits was associated with a trend for lower NfL values (B=0.003 [-0.0004 to 0.007], p=0.081). Based on a Cohen's d of 0.248, a future 1:1 parallel-arm placebo-controlled study using a remyelinating agent with comparable effect as clemastine would need 202 subjects per group to achieve 80% power. CONCLUSIONS: In pwMS, treatment with the remyelinating agent clemastine was associated with a reduction of blood NfL, suggesting that neuroprotection is achievable and measurable with therapeutic remyelination. TRIAL REGISTRATION NUMBER: NCT02040298.

6.
Neurol Sci ; 42(3): 1145-1150, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33089478

RESUMO

INTRODUCTION: Contrast-induced encephalopathy is a rare and usually reversible entity due to the administration of iodinated contrast. Clinical manifestations include cortical blindness, encephalopathy, seizures and focal neurological deficits. METHODS: We report the case of a 56-year-old woman who developed global aphasia and right hemiplegia after a cerebral angiography performed for a subarachnoid haemorrhage. A prompt brain MRI resulted negative, while CT scan revealed left cerebral oedema with the cerebral sulci effacement. Complete recovery was observed in 10 days. DISCUSSION: Diagnosis of contrast-induced encephalopathy requires a temporal correlation between neurological dysfunction and administration of iodinated contrast. Usually, the symptomatology is transient with a full recovery within 48-72 h. The most common symptom is cortical blindness, while other symptoms have been rarely reported. Only 20 cases previously reported global aphasia and/or hemiplegia or mimed anterior circulation strokes. Prompt brain neuroimaging is essential in order to exclude an alternative diagnosis that requires a distinct therapeutic approach.


Assuntos
Meios de Contraste , Acidente Vascular Cerebral , Angiografia Cerebral , Meios de Contraste/efeitos adversos , Feminino , Humanos , Imageamento por Ressonância Magnética , Pessoa de Meia-Idade , Acidente Vascular Cerebral/diagnóstico por imagem , Tomografia Computadorizada por Raios X
7.
Mult Scler ; 26(3): 343-353, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32031464

RESUMO

BACKGROUND: Objective tools for prognosis and disease progression monitoring in multiple sclerosis (MS) are lacking. The visuomotor system could be used to track motor dysfunction at the micron scale through the monitoring of fixational microsaccades. AIMS: The aim of this study was to evaluate whether microsaccades are correlated with standard MS disability metrics and to assess whether these methods play a predictive role in MS disability. METHOD: We used a custom-built retinal eye tracker, the tracking scanning laser ophthalmoscope (TSLO), to record fixation in 111 participants with MS and 100 unaffected controls. RESULTS: In MS participants, a greater number of microsaccades showed significant association with higher Expanded Disability Status Scale score (EDSS, p < 0.001), nine-hole peg test (non-dominant: p = 0.006), Symbol Digit Modalities Test (SMDT, p = 0.014), and Functional Systems Scores (FSS) including brainstem (p = 0.005), cerebellar (p = 0.011), and pyramidal (p = 0.009). Both brainstem FSS and patient-reported fatigue showed significant associations with microsaccade number, amplitude, and peak acceleration. Participants with MS showed a statistically different average number (p = 0.020), peak vertical acceleration (p = 0.003), and vertical amplitude (p < 0.001) versus controls. Logistic regression models for MS disability were created using TSLO microsaccade metrics and paraclinical tests with ⩾80% accuracy. CONCLUSION: Microsaccades provide objective measurements of MS disability level and disease worsening.


Assuntos
Tecnologia de Rastreamento Ocular , Fixação Ocular/fisiologia , Esclerose Múltipla/fisiopatologia , Movimentos Sacádicos/fisiologia , Adulto , Idoso , Biomarcadores , Progressão da Doença , Tecnologia de Rastreamento Ocular/instrumentação , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Índice de Gravidade de Doença , Adulto Jovem
8.
J Neuroinflammation ; 16(1): 203, 2019 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-31684959

RESUMO

BACKGROUND: Retinal optical coherence tomography (OCT) is a clinical and research tool in multiple sclerosis, where it has shown significant retinal nerve fiber (RNFL) and ganglion cell (RGC) layer thinning, while postmortem studies have reported RGC loss. Although retinal pathology in experimental autoimmune encephalomyelitis (EAE) has been described, comparative OCT studies among EAE models are scarce. Furthermore, the best practices for the implementation of OCT in the EAE lab, especially with afoveate animals like rodents, remain undefined. We aimed to describe the dynamics of retinal injury in different mouse EAE models and outline the optimal experimental conditions, scan protocols, and analysis methods, comparing these to histology to confirm the pathological underpinnings. METHODS: Using spectral-domain OCT, we analyzed the test-retest and the inter-rater reliability of volume, peripapillary, and combined horizontal and vertical line scans. We then monitored the thickness of the retinal layers in different EAE models: in wild-type (WT) C57Bl/6J mice immunized with myelin oligodendrocyte glycoprotein peptide (MOG35-55) or with bovine myelin basic protein (MBP), in TCR2D2 mice immunized with MOG35-55, and in SJL/J mice immunized with myelin proteolipid lipoprotein (PLP139-151). Strain-matched control mice were sham-immunized. RGC density was counted on retinal flatmounts at the end of each experiment. RESULTS: Volume scans centered on the optic disc showed the best reliability. Retinal changes during EAE were localized in the inner retinal layers (IRLs, the combination of the RNFL and the ganglion cell plus the inner plexiform layers). In WT, MOG35-55 EAE, progressive thinning of IRL started rapidly after EAE onset, with 1/3 of total loss occurring during the initial 2 months. IRL thinning was associated with the degree of RGC loss and the severity of EAE. Sham-immunized SJL/J mice showed progressive IRL atrophy, which was accentuated in PLP-immunized mice. MOG35-55-immunized TCR2D2 mice showed severe EAE and retinal thinning. MBP immunization led to very mild disease without significant retinopathy. CONCLUSIONS: Retinal neuroaxonal damage develops quickly during EAE. Changes in retinal thickness mirror neuronal loss and clinical severity. Monitoring of the IRL thickness after immunization against MOG35-55 in C57Bl/6J mice seems the most convenient model to study retinal neurodegeneration in EAE.


Assuntos
Encefalomielite Autoimune Experimental/patologia , Degeneração Neural/patologia , Neurônios/patologia , Retina/patologia , Tomografia de Coerência Óptica/métodos , Animais , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA