Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
PLoS Comput Biol ; 18(2): e1009871, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35180220

RESUMO

Spider venom GDPD-like phospholipases D (SicTox) have been identified to be one of the major toxins in recluse spider venom. They are divided into two major clades: the α clade and the ß clade. Most α clade toxins present high activity against lipids with choline head groups such as sphingomyelin, while activities in ß clade toxins vary and include preference for substrates containing ethanolamine headgroups (Sicarius terrosus, St_ßIB1). A structural comparison of available structures of phospholipases D (PLDs) reveals a conserved aromatic cage in the α clade. To test the potential influence of the aromatic cage on membrane-lipid specificity we performed molecular dynamics (MD) simulations of the binding of several PLDs onto lipid bilayers containing choline headgroups; two SicTox from the α clade, Loxosceles intermedia αIA1 (Li_αIA) and Loxosceles laeta αIII1 (Ll_αIII1), and one from the ß clade, St_ßIB1. The simulation results reveal that the aromatic cage captures a choline-headgroup and suggest that the cage plays a major role in lipid specificity. We also simulated an engineered St_ßIB1, where we introduced the aromatic cage, and this led to binding with choline-containing lipids. Moreover, a multiple sequence alignment revealed the conservation of the aromatic cage among the α clade PLDs. Here, we confirmed that the i-face of α and ß clade PLDs is involved in their binding to choline and ethanolamine-containing bilayers, respectively. Furthermore, our results suggest a major role in choline lipid recognition of the aromatic cage of the α clade PLDs. The MD simulation results are supported by in vitro liposome binding assay experiments.


Assuntos
Fosfolipase D , Venenos de Aranha , Colina , Etanolamina , Fosfolipase D/metabolismo , Diester Fosfórico Hidrolases/química , Esfingomielinas , Venenos de Aranha/química , Venenos de Aranha/metabolismo
2.
Nucleic Acids Res ; 47(13): 7118-7129, 2019 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-31180482

RESUMO

The gene cro promotes lytic growth of phages through binding of Cro protein dimers to regulatory DNA sites. Most Cro proteins are one-to-one orthologs, yet their sequence, structure and binding site sequences are quite divergent across lambdoid phages. We report the cocrystal structure of bacteriophage N15 Cro with a symmetric consensus site. We contrast this complex with an orthologous structure from phage λ, which has a dissimilar binding site sequence and a Cro protein that is highly divergent in sequence, dimerization interface and protein fold. The N15 Cro complex has less DNA bending and smaller DNA-induced changes in protein structure. N15 Cro makes fewer direct contacts and hydrogen bonds to bases, relying mostly on water-mediated and Van der Waals contacts to recognize the sequence. The recognition helices of N15 Cro and λ Cro make mostly nonhomologous and nonanalogous contacts. Interface alignment scores show that half-site binding geometries of N15 Cro and λ Cro are less similar to each other than to distantly related CI repressors. Despite this divergence, the Cro family shows several code-like protein-DNA sequence covariations. In some cases, orthologous genes can achieve a similar biological function using very different specific molecular interactions.


Assuntos
Colífagos/metabolismo , Regiões Operadoras Genéticas , Proteínas Repressoras/química , Proteínas Virais Reguladoras e Acessórias/química , Bacteriófago P22/metabolismo , Bacteriófago lambda/metabolismo , Sequência Consenso , Cristalografia por Raios X , DNA Bacteriano/metabolismo , Evolução Molecular , Ligação de Hidrogênio , Modelos Moleculares , Conformação de Ácido Nucleico , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/metabolismo , Proteínas Virais Reguladoras e Acessórias/metabolismo
3.
Proteins ; 87(1): 23-33, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30315592

RESUMO

The amino-acid sequences of soluble, globular proteins must have hydrophobic residues to form a stable core, but excess sequence hydrophobicity can lead to loss of native state conformational specificity and aggregation. Previous studies of polar-to-hydrophobic mutations in the ß-sheet of the Arc repressor dimer showed that a single substitution at position 11 (N11L) leads to population of an alternate dimeric fold in which the ß-sheet is replaced by helix. Two additional hydrophobic mutations at positions 9 and 13 (Q9V and R13V) lead to population of a differently folded octamer along with both dimeric folds. Here we conduct a comprehensive study of the sequence determinants of this progressive loss of fold specificity. We find that the alternate dimer-fold specifically results from the N11L substitution and is not promoted by other hydrophobic substitutions in the ß-sheet. We also find that three highly hydrophobic substitutions at positions 9, 11, and 13 are necessary and sufficient for oligomer formation, but the oligomer size depends on the identity of the hydrophobic residue in question. The hydrophobic substitutions increase thermal stability, illustrating how increased hydrophobicity can increase folding stability even as it degrades conformational specificity. The oligomeric variants are predicted to be aggregation-prone but may be hindered from doing so by proline residues that flank the ß-sheet region. Loss of conformational specificity due to increased hydrophobicity can manifest itself at any level of structure, depending upon the specific mutations and the context in which they occur.


Assuntos
Interações Hidrofóbicas e Hidrofílicas , Mutação , Dobramento de Proteína , Estrutura Secundária de Proteína , Proteínas Repressoras/química , Proteínas Repressoras/genética , Substituição de Aminoácidos , Modelos Moleculares
4.
BMC Evol Biol ; 18(1): 194, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30563447

RESUMO

BACKGROUND: Venom-expressed sphingomyelinase D/phospholipase D (SMase D/PLD) enzymes evolved from the ubiquitous glycerophosphoryl diester phosphodiesterases (GDPD). Expression of GDPD-like SMaseD/PLD toxins in both arachnids and bacteria has inspired consideration of the relative contributions of lateral gene transfer and convergent recruitment in the evolutionary history of this lineage. Previous work recognized two distinct lineages, a SicTox-like (ST-like) clade including the arachnid toxins, and an Actinobacterial-toxin like (AT-like) clade including the bacterial toxins and numerous fungal homologs. RESULTS: Here we expand taxon sampling by homology detection to discover new GDPD-like SMase D/PLD homologs. The ST-like clade now includes homologs in a wider variety of arthropods along with a sister group in Cnidaria; the AT-like clade now includes additional fungal phyla and proteobacterial homologs; and we report a third clade expressed in diverse aquatic metazoan taxa, a few single-celled eukaryotes, and a few aquatic proteobacteria. GDPD-like SMaseD/PLDs have an ancient presence in chelicerates within the ST-like family and ctenophores within the Aquatic family. A rooted phylogenetic tree shows that the three clades derived from a basal paraphyletic group of proteobacterial GDPD-like SMase D/PLDs, some of which are on mobile genetic elements. GDPD-like SMase D/PLDs share a signature C-terminal motif and a shortened ßα1 loop, features that distinguish them from GDPDs. The three major clades also have active site loop signatures that distinguish them from GDPDs and from each other. Analysis of molecular phylogenies with respect to organismal relationships reveals a dynamic evolutionary history including both lateral gene transfer and gene duplication/loss. CONCLUSIONS: The GDPD-like SMaseD/PLD enzymes derive from a single ancient ancestor, likely proteobacterial, and radiated into diverse organismal lineages at least in part through lateral gene transfer.


Assuntos
Evolução Molecular , Fosfolipase D/genética , Toxinas Biológicas/genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência Conservada , Óperon/genética , Filogenia , Domínios Proteicos , Homologia de Sequência de Aminoácidos
5.
J Biol Chem ; 290(17): 10994-1007, 2015 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-25752604

RESUMO

Venoms of the sicariid spiders contain phospholipase D enzyme toxins that can cause severe dermonecrosis and even death in humans. These enzymes convert sphingolipid and lysolipid substrates to cyclic phosphates by activating a hydroxyl nucleophile present in both classes of lipid. The most medically relevant substrates are thought to be sphingomyelin and/or lysophosphatidylcholine. To better understand the substrate preference of these toxins, we used (31)P NMR to compare the activity of three related but phylogenetically diverse sicariid toxins against a diverse panel of sphingolipid and lysolipid substrates. Two of the three showed significantly faster turnover of sphingolipids over lysolipids, and all three showed a strong preference for positively charged (choline and/or ethanolamine) over neutral (glycerol and serine) headgroups. Strikingly, however, the enzymes vary widely in their preference for choline, the headgroup of both sphingomyelin and lysophosphatidylcholine, versus ethanolamine. An enzyme from Sicarius terrosus showed a strong preference for ethanolamine over choline, whereas two paralogous enzymes from Loxosceles arizonica either preferred choline or showed no significant preference. Intrigued by the novel substrate preference of the Sicarius enzyme, we solved its crystal structure at 2.1 Å resolution. The evolution of variable substrate specificity may help explain the reduced dermonecrotic potential of some natural toxin variants, because mammalian sphingolipids use primarily choline as a positively charged headgroup; it may also be relevant for sicariid predatory behavior, because ethanolamine-containing sphingolipids are common in insect prey.


Assuntos
Proteínas de Artrópodes/química , Fosfolipase D/química , Venenos de Aranha/química , Aranhas/enzimologia , Animais , Proteínas de Artrópodes/metabolismo , Cristalografia por Raios X , Lipídeos , Ressonância Magnética Nuclear Biomolecular , Fosfolipase D/metabolismo , Venenos de Aranha/metabolismo , Especificidade por Substrato/fisiologia
6.
Proteins ; 81(11): 1988-96, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23843258

RESUMO

Insertions and deletions in protein sequences, or indels, can disrupt structure and may result in changes in protein folds during evolution or in association with alternative splicing. Pfl 6 and Xfaso 1 are two proteins in the Cro family that share a common ancestor but have different folds. Sequence alignments of the two proteins show two gaps, one at the N terminus, where the sequence of Xfaso 1 is two residues shorter, and one near the center of the sequence, where the sequence of Pfl 6 is five residues shorter. To test the potential importance of indels in Cro protein evolution, we generated hybrid variants of Pfl 6 and Xfaso 1 with indels in one or both regions, chosen according to several plausible sequence alignments. All but one deletion variant completely unfolded both proteins, showing that a longer N-terminal sequence was critical for Pfl 6 folding and a longer central region sequence was critical for Xfaso 1 folding. By contrast, Xfaso 1 tolerated a longer N-terminal sequence with little destabilization, and Pfl 6 tolerated central region insertions, albeit with substantial effects on thermal stability and some perturbation of the surrounding structure. None of the mutations appeared to convert one stable fold into the other. On the basis of this two-protein comparison, short insertion and deletion mutations probably played a role in evolutionary fold change in the Cro family, but were also not the only factors.


Assuntos
Mutação INDEL/genética , Proteínas/química , Proteínas/genética , Evolução Biológica , Dicroísmo Circular , Evolução Molecular , Espectroscopia de Ressonância Magnética , Modelos Moleculares
7.
Protein Sci ; 32(7): e4701, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37313620

RESUMO

The glycerophosphodiester phosphodiesterase (GDPD)-like SMaseD/PLD domain family, which includes phospholipase D (PLD) toxins in recluse spiders and actinobacteria, evolved anciently in bacteria from the GDPD. The PLD enzymes retained the core (ß/α)8 barrel fold of GDPD, while gaining a signature C-terminal expansion motif and losing a small insertion domain. Using sequence alignments and phylogenetic analysis, we infer that the C-terminal motif derives from a segment of an ancient bacterial PLAT domain. Formally, part of a protein containing a PLAT domain repeat underwent fusion to the C terminus of a GDPD barrel, leading to attachment of a segment of a PLAT domain, followed by a second complete PLAT domain. The complete domain was retained only in some basal homologs, but the PLAT segment was conserved and repurposed as the expansion motif. The PLAT segment corresponds to strands ß7-ß8 of a ß-sandwich, while the expansion motif as represented in spider PLD toxins has been remodeled as an α-helix, a ß-strand, and an ordered loop. The GDPD-PLAT fusion led to two acquisitions in founding the GDPD-like SMaseD/PLD family: (1) a PLAT domain that presumably supported early lipase activity by mediating membrane association, and (2) an expansion motif that putatively stabilized the catalytic domain, possibly compensating for, or permitting, loss of the insertion domain. Of wider significance, messy domain shuffling events can leave behind scraps of domains that can be salvaged, remodeled, and repurposed.


Assuntos
Fosfolipase D , Fosfolipase D/genética , Fosfolipase D/química , Fosfolipase D/metabolismo , Sequência de Aminoácidos , Filogenia , Alinhamento de Sequência , Domínio Catalítico , Bactérias/metabolismo
8.
J Biomol NMR ; 50(1): 13-8, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21424227

RESUMO

A method based on the Carr-Purcell-Meiboom-Gill relaxation dispersion experiment is presented for measuring the temperature coefficients of amide proton chemical shifts of low populated 'invisible' protein states that exchange with a 'visible' ground state on the millisecond time-scale. The utility of the approach is demonstrated with an application to an I58D mutant of the Pfl6 Cro protein that undergoes exchange between the native, folded state and a cold denatured, unfolded conformational ensemble that is populated at a level of 6% at 2.5°C. A wide distribution of amide temperature coefficients is measured for the unfolded state. The distribution is centered about -5.6 ppb/K, consistent with an absence of intra-molecular hydrogen bonds, on average. However, the large range of values (standard deviation of 2.1 ppb/K) strongly supports the notion that the unfolded state of the protein is not a true random coil polypeptide chain.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Prótons , Temperatura , Ligação de Hidrogênio , Modelos Moleculares , Conformação Proteica
9.
Anal Chem ; 83(10): 3881-9, 2011 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-21486017

RESUMO

The overall structure of a protein-protein complex reflects an intricate arrangement of noncovalent interactions. Whereas intramolecular interactions confer secondary and tertiary structure to individual subunits, intermolecular interactions lead to quaternary structure--the ordered aggregation of separate polypeptide chains into multisubunit assemblies. The specific ensemble of noncovalent contacts dictates the stability of subunit folds, enforces protein-protein binding specificity, and determines multimer stability. Consequently, noncovalent architecture is likely to play a role in the gas-phase dissociation of these assemblies during tandem mass spectrometry (MS/MS). To further advance the applicability of MS/MS to analytical problems in structural biology, a better understanding of the interplay between the structures and fragmentation behaviors of noncovalent protein complexes is essential. The present work constitutes a systematic study of model protein homodimers (bacteriophage N15 Cro, bacteriophage λ Cro, and bacteriophage P22 Arc) with related but divergent structures, both in terms of subunit folds and protein-protein interfaces. Because each of these dimers has a well-characterized structure (solution and/or crystal structure), specific noncovalent features could be correlated with gas-phase disassembly patterns as studied by collision-induced dissociation, surface-induced dissociation, and ion mobility. Of the several respects in which the dimers differed in structure, the presence or absence of intermolecular electrostatic contacts exerted the most significant influence on the gas-phase dissociation behavior. This is attributed to the well-known enhancement of ionic interactions in the absence of bulk solvent. Because salt bridges are general contributors to both intermolecular and intramolecular stability in protein complexes, these observations are broadly applicable to aid in the interpretation or prediction of dissociation spectra for noncovalent protein assemblies.


Assuntos
Gases/química , Complexos Multiproteicos/química , Espectrometria de Massas em Tandem/métodos , Bacteriófagos/metabolismo , Dimerização , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Eletricidade Estática , Proteínas Virais/química , Proteínas Virais Reguladoras e Acessórias/química
10.
Proc Natl Acad Sci U S A ; 105(7): 2343-8, 2008 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-18227506

RESUMO

Proteins that share common ancestry may differ in structure and function because of divergent evolution of their amino acid sequences. For a typical diverse protein superfamily, the properties of a few scattered members are known from experiment. A satisfying picture of functional and structural evolution in relation to sequence changes, however, may require characterization of a larger, well chosen subset. Here, we employ a "stepping-stone" method, based on transitive homology, to target sequences intermediate between two related proteins with known divergent properties. We apply the approach to the question of how new protein folds can evolve from preexisting folds and, in particular, to an evolutionary change in secondary structure and oligomeric state in the Cro family of bacteriophage transcription factors, initially identified by sequence-structure comparison of distant homologs from phages P22 and lambda. We report crystal structures of two Cro proteins, Xfaso 1 and Pfl 6, with sequences intermediate between those of P22 and lambda. The domains show 40% sequence identity but differ by switching of alpha-helix to beta-sheet in a C-terminal region spanning approximately 25 residues. Sedimentation analysis also suggests a correlation between helix-to-sheet conversion and strengthened dimerization.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas Repressoras/química , Proteínas Virais Reguladoras e Acessórias/química , Sequência de Aminoácidos , Dicroísmo Circular , Cristalografia por Raios X , Modelos Moleculares , Dados de Sequência Molecular , Estrutura Terciária de Proteína
11.
Mol Biol Evol ; 26(3): 547-66, 2009 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-19042943

RESUMO

The venom enzyme sphingomyelinase D (SMase D) in the spider family Sicariidae (brown or fiddleback spiders [Loxosceles] and six-eyed sand spiders [Sicarius]) causes dermonecrosis in mammals. SMase D is in a gene family with multiple venom-expressed members that vary in functional specificity. We analyze molecular evolution of this family and variation in SMase D activity among crude venoms using a data set that represents the phylogenetic breadth of Loxosceles and Sicarius. We isolated a total of 190 nonredundant nucleotide sequences encoding 168 nonredundant amino acid sequences of SMase D homologs from 21 species. Bayesian phylogenies support two major clades that we name alpha and beta, within which we define seven and three subclades, respectively. Sequences in the alpha clade are exclusively from New World Loxosceles and Loxosceles rufescens and include published genes for which expression products have SMase D and dermonecrotic activity. The beta clade includes paralogs from New World Loxosceles that have no, or reduced, SMase D and no dermonecrotic activity and also paralogs from Sicarius and African Loxosceles of unknown activity. Gene duplications are frequent, consistent with a birth-and-death model, and there is evidence of purifying selection with episodic positive directional selection. Despite having venom-expressed SMase D homologs, venoms from New World Sicarius have reduced, or no, detectable SMase D activity, and Loxosceles in the Southern African spinulosa group have low SMase D activity. Sequence conservation mapping shows >98% conservation of proposed catalytic residues of the active site and around a plug motif at the opposite end of the TIM barrel, but alpha and beta clades differ in conservation of key residues surrounding the apparent substrate binding pocket. Based on these combined results, we propose an inclusive nomenclature for the gene family, renaming it SicTox, and discuss emerging patterns of functional diversification.


Assuntos
Evolução Molecular , Diester Fosfórico Hidrolases/genética , Venenos de Aranha/enzimologia , Animais , Duplicação Gênica , Família Multigênica , Filogenia , Seleção Genética
12.
J Biomol NMR ; 47(2): 135-41, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20428928

RESUMO

NMR relaxation dispersion spectroscopy is a powerful method for studying protein conformational dynamics whereby visible, ground and invisible, excited conformers interconvert on the millisecond time-scale. In addition to providing kinetics and thermodynamics parameters of the exchange process, the CPMG dispersion experiment also allows extraction of the absolute values of the chemical shift differences between interconverting states, /Delta(omega)/, opening the way for structure determination of excited state conformers. Central to the goal of structural analysis is the availability of the chemical shifts of the excited state that can only be obtained once the signs of Delta(omega) are known. Herein we describe a very simple method for determining the signs of (1)H(N) Delta(omega) values based on a comparison of peak positions in the directly detected dimensions of a pair of (1)H(N)-(15)N correlation maps recorded at different static magnetic fields. The utility of the approach is demonstrated for three proteins that undergo millisecond time-scale conformational rearrangements. Although the method provides fewer signs than previously published techniques it does have a number of strengths: (1) Data sets needed for analysis are typically available from other experiments, such as those required for measuring signs of (15)N Delta(omega) values, thus requiring no additional experimental time, (2) acquisition times in the critical detection dimension can be as long as necessary and (3) the signs obtained can be used to cross-validate those from other approaches.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas/química , Cinética , Isótopos de Nitrogênio , Prótons , Termodinâmica
13.
Genetics ; 211(4): 1345-1355, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30692195

RESUMO

To detect a direction to evolution, without the pitfalls of reconstructing ancestral states, we need to compare "more evolved" to "less evolved" entities. But because all extant species have the same common ancestor, none are chronologically more evolved than any other. However, different gene families were born at different times, allowing us to compare young protein-coding genes to those that are older and hence have been evolving for longer. To be retained during evolution, a protein must not only have a function, but must also avoid toxic dysfunction such as protein aggregation. There is conflict between the two requirements: hydrophobic amino acids form the cores of protein folds, but also promote aggregation. Young genes avoid strongly hydrophobic amino acids, which is presumably the simplest solution to the aggregation problem. Here we show that young genes' few hydrophobic residues are clustered near one another along the primary sequence, presumably to assist folding. The higher aggregation risk created by the higher hydrophobicity of older genes is counteracted by more subtle effects in the ordering of the amino acids, including a reduction in the clustering of hydrophobic residues until they eventually become more interspersed than if distributed randomly. This interspersion has previously been reported to be a general property of proteins, but here we find that it is restricted to old genes. Quantitatively, the index of dispersion delineates a gradual trend, i.e., a decrease in the clustering of hydrophobic amino acids over billions of years.


Assuntos
Amiloide/genética , Evolução Molecular , Modelos Genéticos , Amiloide/química , Amiloide/metabolismo , Animais , Camundongos , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Multimerização Proteica , Seleção Genética
14.
Proteomics ; 8(22): 4772-81, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18924109

RESUMO

ORFan genes can constitute a large fraction of a bacterial genome, but due to their lack of homologs, their functions have remained largely unexplored. To determine if particular features of ORFan-encoded proteins promote their presence in a genome, we analyzed properties of ORFans that originated over a broad evolutionary timescale. We also compared ORFan genes to another class of acquired genes, heterogeneous occurrence in prokaryotes (HOPs), which have homologs in other bacteria. A total of 54 ORFan and HOP genes selected from different phylogenetic depths in the Escherichia coli lineage were cloned, expressed, purified, and subjected to circular dichroism (CD) spectroscopy. A majority of genes could be expressed, but only 18 yielded sufficient soluble protein for spectral analysis. Of these, half were significantly alpha-helical, three were predominantly beta-sheet, and six were of intermediate/indeterminate structure. Although a higher proportion of HOPs yielded soluble proteins with resolvable secondary structures, ORFans resembled HOPs with regard to most of the other features tested. Overall, we found that those ORFan and HOP genes that have persisted in the E. coli lineage were more likely to encode soluble and folded proteins, more likely to display environmental modulation of their gene expression, and by extrapolation, are more likely to be functional.


Assuntos
Proteínas de Escherichia coli/química , Escherichia coli/genética , Evolução Molecular , Genes Bacterianos , Fases de Leitura Aberta/genética , Conformação Proteica , Dicroísmo Circular , Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Regulação Bacteriana da Expressão Gênica , Genoma Bacteriano , Filogenia , Dobramento de Proteína , Estrutura Secundária de Proteína
15.
Protein Sci ; 27(10): 1767-1779, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30051937

RESUMO

New protein folds may evolve from existing folds through metamorphic evolution involving a dramatic switch in structure. To mimic pathways by which amino acid sequence changes could induce a change in fold, we designed two folded hybrids of Xfaso 1 and Pfl 6, a pair of homologous Cro protein sequences with ~40% identity but different folds (all-α vs. α + ß, respectively). Each hybrid, XPH1 or XPH2, is 85% identical in sequence to its parent, Xfaso 1 or Pfl 6, respectively; 55% identical to its noncognate parent; and ~70% identical to the other hybrid. XPH1 and XPH2 also feature a designed hybrid chameleon sequence corresponding to the C-terminal region, which switched from α-helical to ß-sheet structure during Cro evolution. We report solution nuclear magnetic resonance (NMR) structures of XPH1 and XPH2 at 0.3 Å and 0.5 Å backbone root mean square deviation (RMSD), respectively. XPH1 retains a global fold generally similar to Xfaso 1, and XPH2 retains a fold similar to Pfl 6, as measured by TM-align scores (~0.7), DALI Z-scores (7-9), and backbone RMSD (2-3 Å RMSD for the most ordered regions). However, these scores also indicate significant deviations in structure. Most notably, XPH1 and XPH2 have different, and intermediate, secondary structure content relative to Xfaso 1 and Pfl 6. The multistep progression in sequence, from Xfaso 1 to XPH1 to XPH2 to Pfl 6, thus involves both abrupt and gradual changes in folding pattern. The plasticity of some protein folds may allow for "polymetamorphic" evolution through intermediate structures.


Assuntos
Proteínas/química , Modelos Moleculares , Mutação , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Dobramento de Proteína , Proteínas/genética
16.
PeerJ ; 6: e4691, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29876146

RESUMO

Venom has been associated with the ecological success of many groups of organisms, most notably reptiles, gastropods, and arachnids. In some cases, diversification has been directly linked to tailoring of venoms for dietary specialization. Spiders in particular are known for their diverse venoms and wide range of predatory behaviors, although there is much to learn about scales of variation in venom composition and function. The current study focuses on venom characteristics in different sexes within a species of spider. We chose the genus Tetragnatha (Tetragnathidae) because of its unusual courtship behavior involving interlocking of the venom delivering chelicerae (i.e., the jaws), and several species in the genus are already known to have sexually dimorphic venoms. Here, we use transcriptome and proteome analyses to identify venom components that are dimorphic in Tetragnatha versicolor. We present cDNA sequences including unique, male-specific high molecular weight proteins that have remote, if any, detectable similarity to known venom components in spiders or other venomous lineages and have no detectable homologs in existing databases. While the function of these proteins is not known, their presence in association with the cheliceral locking mechanism during mating together with the presence of prolonged male-male mating attempts in a related, cheliceral-locking species (Doryonychus raptor) lacking the dimorphism suggests potential for a role in sexual communication.

17.
J Mol Biol ; 362(4): 800-9, 2006 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-16935301

RESUMO

Native protein structures achieve stability in part by burying hydrophobic side-chains. About 75% of all amino acid residues buried in protein interiors are non-polar. Buried residues are not uniformly distributed in protein sequences, but sometimes cluster as contiguous polypeptide stretches that run through the interior of protein domain structures. Such regions have an intrinsically high local sequence density of non-polar residues, creating a potential problem: local non-polar sequences also promote protein misfolding and aggregation into non-native structures such as the amyloid fibrils in Alzheimer's disease. Here we show that long buried blocks of sequence in protein domains of known structure have, on average, a lower content of non-polar amino acids (about 70%) than do isolated buried residues (about 80%). This trend is observed both in small and in large protein domains and is independent of secondary structure. Long, completely non-polar buried stretches containing many large side-chains are particularly avoided. Aspartate residues that are incorporated in long buried stretches were found to make fewer polar interactions than those in short stretches, hinting that they may be destabilizing to the native state. We suggest that evolutionary pressure is acting on non-native properties, causing buried polar residues to be placed at positions where they would break up aggregation-prone non-polar sequences, perhaps even at some cost to native state stability.


Assuntos
Amiloide/química , Evolução Molecular , Sequência de Aminoácidos , Ácido Aspártico/análise , Ácido Aspártico/metabolismo , Estrutura Terciária de Proteína , Seleção Genética , Eletricidade Estática
18.
Structure ; 25(11): 1687-1696.e4, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29033289

RESUMO

The de novo evolution of protein-coding genes from noncoding DNA is emerging as a source of molecular innovation in biology. Studies of random sequence libraries, however, suggest that young de novo proteins will not fold into compact, specific structures typical of native globular proteins. Here we show that Bsc4, a functional, natural de novo protein encoded by a gene that evolved recently from noncoding DNA in the yeast S. cerevisiae, folds to a partially specific three-dimensional structure. Bsc4 forms soluble, compact oligomers with high ß sheet content and a hydrophobic core, and undergoes cooperative, reversible denaturation. Bsc4 lacks a specific quaternary state, however, existing instead as a continuous distribution of oligomer sizes, and binds dyes indicative of amyloid oligomers or molten globules. The combination of native-like and non-native-like properties suggests a rudimentary fold that could potentially act as a functional intermediate in the emergence of new folded proteins de novo.


Assuntos
DNA Intergênico/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Sequência de Aminoácidos , Clonagem Molecular , DNA Intergênico/genética , DNA Intergênico/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Cinética , Biossíntese de Proteínas , Conformação Proteica em Folha beta , Desnaturação Proteica , Dobramento de Proteína , Multimerização Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Termodinâmica
19.
J Mol Biol ; 350(4): 667-81, 2005 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-15967464

RESUMO

The O(R) regions from several lambdoid bacteriophages contain the three regulatory sites O(R)1, O(R)2 and O(R)3, to which the Cro and CI proteins can bind. These sites show imperfect dyad symmetry, have similar sequences, and generally lie on the same face of the DNA double helix. We have developed a computational method, which analyzes the O(R) regions of additional phages and predicts the location of these three sites. After tuning the method to predict known O(R) sites accurately, we used it to predict unknown sites, and ultimately compiled a database of 32 known and predicted O(R) binding site sets. We then identified sequences of the recognition helices (RH) for the cognate Cro proteins through manual inspection of multiple sequence alignments. Comparison of Cro RH and consensus O(R) half-site sequences revealed strong one-to-one correlations between two amino acids at each of three RH positions and two bases at each of three half-site positions (H1-->2, H3-->5 and H6-->6). In each of these three cases, one of the two amino acid/base-pairings corresponds to a contact observed in the crystal structure of a lambda Cro/consensus operator complex. The alternate amino acid/base combinations were rationalized using structural models. We suggest that the pairs of amino acid residues act as binary switches that efficiently modulate specificity for different consensus half-site variants during evolution. The observation of structurally reasonable amino acid-to-base correlations suggests that Cro proteins share some common rules of recognition despite their functional and structural diversity.


Assuntos
Proteínas de Ligação a DNA/genética , DNA/metabolismo , Regulação Viral da Expressão Gênica/fisiologia , Genes Reguladores , Proteínas Repressoras/genética , Proteínas Virais/genética , Bacteriófago lambda/genética , Bacteriófago lambda/metabolismo , Sítios de Ligação , Proteínas de Ligação a DNA/metabolismo , Genoma Viral , Estrutura Terciária de Proteína , Proteínas Repressoras/metabolismo , Análise de Sequência de DNA , Análise de Sequência de Proteína , Proteínas Virais/metabolismo , Proteínas Virais Reguladoras e Acessórias
20.
Structure ; 12(4): 569-81, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15062080

RESUMO

We report the solution structure of the Cro protein from bacteriophage P22. Comparisons of its sequence and structure to those of lambda Cro strongly suggest an alpha-to-beta secondary structure switching event during Cro evolution. The folds of P22 Cro and lambda Cro share a three alpha helix fragment comprising the N-terminal half of the domain. However, P22 Cro's C terminus folds as two helices, while lambda Cro's folds as a beta hairpin. The all-alpha fold found for P22 Cro appears to be ancestral, since it also occurs in cI proteins, which are anciently duplicated paralogues of Cro. PSI-BLAST and transitive homology analyses strongly suggest that the sequences of P22 Cro and lambda Cro are globally homologous despite encoding different folds. The alpha+beta fold of lambda Cro therefore likely evolved from its all-alpha ancestor by homologous secondary structure switching, rather than by nonhomologous replacement of both sequence and structure.


Assuntos
Bacteriófago lambda/química , Proteínas de Ligação a DNA/química , Evolução Molecular , Proteínas Repressoras/química , Proteínas Virais/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Bacteriófago lambda/genética , Dicroísmo Circular , Proteínas de Ligação a DNA/genética , Dados de Sequência Molecular , Estrutura Secundária de Proteína , Proteínas Repressoras/genética , Homologia de Sequência , Proteínas Virais/genética , Proteínas Virais Reguladoras e Acessórias
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA