Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Br J Nutr ; 130(8): 1316-1328, 2023 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36746392

RESUMO

Inclusion in nasogastric tube feeds (NGTF) of acid-sensitive, seaweed-derived alginate, expected to form a reversible gel in the stomach, may create a more normal intragastric state and modified gastrointestinal responses. This may ameliorate NGTF-associated risk of diarrhoea, upper gastrointestinal symptoms and appetite suppression. In a randomised, crossover, comparison study, undertaken in twelve healthy males, an alginate-containing feed (F + ALG) or one that was alginate-free (F-ALG) (300 ml) was given over 1 h with a 7-14-d washout period between treatments. Baseline and for 4-h post-feed initiation, MRI measurements were made to establish small bowel water content (SBWC), gastric contents volume (GCV) and appearance, and superior mesenteric artery blood flux. Blood glucose and gut peptides were measured. Subjective appetite and upper gastrointestinal symptoms scores were obtained. Ad libitum pasta consumption 3-h post-feeding was measured. F + ALG exhibited a gastric appearance consistent with gelling surrounded by a freely mobile water halo. Significant main effects of feed were seen for SBWC (P = 0·03) and peptide YY (PYY) (P = 0·004) which were attributed to generally higher values for SBWC with F + ALG (max difference between adjusted means 72 ml at 210 min) and generally lower values for PYY with F + ALG. GCV showed a faster reduction with F + ALG, less between-participant variation and a feed-by-time interaction (P = 0·04). Feed-by-time interactions were also seen with glucagon-like-peptide 1 (GLP-1) (P = 0·02) and glucose-dependent insulinotropic polypeptide (GIP) (P = 0·002), both showing a blunted response with F + ALG. Apparent intragastric gelling with F + ALG and subsequent differences in gastrointestinal and endocrine responses have been demonstrated between an alginate-containing and alginate-free feed.


Assuntos
Alginatos , Gastroenteropatias , Masculino , Humanos , Alginatos/química , Alginatos/farmacologia , Nutrição Enteral , Intestino Delgado , Polipeptídeo Inibidor Gástrico , Apetite , Imageamento por Ressonância Magnética , Peptídeo YY , Água , Estudos Cross-Over , Insulina
2.
J Physiol ; 599(8): 2197-2210, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33595094

RESUMO

KEY POINTS: The trajectory, magnitude and localisation of metabolic perturbations caused by immobilisation (IMM) are unresolved. Forearm glucose uptake (FGU) in response to glucose feeding was determined in healthy men before and during 72 h of forearm IMM, and the same measurements were made in the non-IMM contralateral limb at baseline and 72 h. In a similar study design, FGU and forearm lipid uptake were determined after a high fat mixed-meal (HFMM) in IMM and non-IMM limbs. FGU was reduced by 38%, 57% and 46% following 24, 48 and 72 h IMM, respectively, but was unchanged in the non-IMM limb. A similar FGU response to IMM was observed after a HFMM, and forearm lipid uptake was unchanged. A sizeable reduction in FGU occurs in just 24 h of IMM, which is sustained thereafter and specific to the IMM limb, making unloading per se the likely rapid driver of dysregulation. ABSTRACT: The trajectory and magnitude of metabolic perturbations caused by muscle disuse are unknown yet central to understanding the mechanistic basis of immobilisation-associated metabolic dysregulation. To address this gap, forearm glucose uptake (FGU) was determined in 10 healthy men (age 24.9 ± 0.6 years, weight 71.9 ± 2.6 kg, BMI 22.6 ± 0.6 kg/m2 ) during a 180 min oral glucose challenge before (0) and after 24, 48 and 72 h of arm immobilisation, and before and after 72 h in the contralateral non-immobilised arm (Study A). FGU was decreased from baseline at 24 h (38%, P = 0.04), 48 h (57%, P = 0.01) and 72 h (46%, P = 0.06) of immobilisation, and was also 63% less than the non-immobilised limb at 72 h (P = 0.002). In a second study, FGU and forearm lipid uptake were determined in nine healthy men (age 22.4 ± 1.3 years, weight 71.4 ± 2.8 kg, BMI 22.6 ± 0.8 kg/m2 ) during a 420 min mixed-meal challenge before (0) and after 24 and 48 h of arm immobilisation and before and after 72 h in the contralateral non-immobilised arm (Study B). FGU responses were similar to Study A, and forearm lipid uptake was unchanged from pre-immobilisation in both arms over the study. A sizeable decrement in FGU in response to glucose feeding occurred within 24 h of immobilisation that was sustained and specific to the immobilised limb. Increasing lipid availability had no additional impact on the rate or magnitude of these responses or on lipid uptake. These findings highlight a lack of muscle contraction per se as a fast-acting physiological insult to FGU.


Assuntos
Antebraço , Insulina , Adulto , Glicemia , Glucose , Humanos , Lipídeos , Masculino , Adulto Jovem
3.
Br J Nutr ; 122(10): 1142-1154, 2019 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-31709970

RESUMO

Whole-grain cereal breakfast consumption has been associated with beneficial effects on glucose and insulin metabolism as well as satiety. Pearl millet is a popular ancient grain variety that can be grown in hot, dry regions. However, little is known about its health effects. The present study investigated the effect of a pearl millet porridge (PMP) compared with a well-known Scottish oats porridge (SOP) on glycaemic, gastrointestinal, hormonal and appetitive responses. In a randomised, two-way crossover trial, twenty-six healthy participants consumed two isoenergetic/isovolumetric PMP or SOP breakfast meals, served with a drink of water. Blood samples for glucose, insulin, glucagon-like peptide 1, glucose-dependent insulinotropic polypeptide (GIP), peptide YY, gastric volumes and appetite ratings were collected 2 h postprandially, followed by an ad libitum meal and food intake records for the remainder of the day. The incremental AUC (iAUC2h) for blood glucose was not significantly different between the porridges (P > 0·05). The iAUC2h for gastric volume was larger for PMP compared with SOP (P = 0·045). The iAUC2h for GIP concentration was significantly lower for PMP compared with SOP (P = 0·001). Other hormones and appetite responses were similar between meals. In conclusion, the present study reports, for the first time, data on glycaemic and physiological responses to a pearl millet breakfast, showing that this ancient grain could represent a sustainable alternative with health-promoting characteristics comparable with oats. GIP is an incretin hormone linked to TAG absorption in adipose tissue; therefore, the lower GIP response for PMP may be an added health benefit.


Assuntos
Apetite/efeitos dos fármacos , Avena , Glicemia , Desjejum , Motilidade Gastrointestinal/efeitos dos fármacos , Pennisetum , Adulto , Estudos Cross-Over , Feminino , Humanos , Masculino , Adulto Jovem
4.
Gastroenterology ; 145(5): 1016-1025.e2, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-23872500

RESUMO

BACKGROUND & AIMS: Diets high in fructose have been proposed to contribute to nonalcoholic fatty liver disease. We compared the effects of high-fructose and matched glucose intake on hepatic triacylglycerol (TAG) concentration and other liver parameters. DESIGN: In a double-blind study, we randomly assigned 32 healthy but centrally overweight men to groups that received either a high-fructose or high-glucose diet (25% energy). These diets were provided during an initial isocaloric period of 2 weeks, followed by a 6-week washout period, and then again during a hypercaloric 2-week period. The primary outcome measure was hepatic level of TAG, with additional assessments of TAG levels in serum and soleus muscle, hepatic levels of adenosine triphosphate, and systemic and hepatic insulin resistance. RESULTS: During the isocaloric period of the study, both groups had stable body weights and concentrations of TAG in liver, serum, and soleus muscle. The high-fructose diet produced an increase of 22 ± 52 µmol/L in the serum level of uric acid, whereas the high-glucose diet led to a reduction of 23 ± 25 µmol/L (P < .01). The high-fructose diet also produced an increase of 0.8 ± 0.9 in the homeostasis model assessment of insulin resistance, whereas the high-glucose diet produced an increase of only 0.1 ± 0.7 (P = .03). During the hypercaloric period, participants in the high-fructose and high-glucose groups had similar increases in weight (1.0 ± 1.4 vs 0.6 ± 1.0 kg; P = .29) and absolute concentration of TAG in liver (1.70% ± 2.6% vs 2.05% ± 2.9%; P = .73) and serum (0.36 ± 0.75 vs 0.33 ± 0.38 mmol/L; P = .91), and similar results in biochemical assays of liver function. Body weight changes were associated with changes in liver biochemistry and concentration of TAGs. CONCLUSIONS: In the isocaloric period, overweight men who were on a high-fructose or a high-glucose diet did not develop any significant changes in hepatic concentration of TAGs or serum levels of liver enzymes. However, in the hypercaloric period, both high-fructose and high-glucose diets produced significant increases in these parameters without any significant difference between the 2 groups. This indicates an energy-mediated, rather than a specific macronutrient-mediated, effect. Clinical trials.gov no: NCT01050140.


Assuntos
Carboidratos da Dieta/farmacologia , Frutose/farmacologia , Glucose/farmacologia , Fígado/efeitos dos fármacos , Fígado/metabolismo , Sobrepeso/metabolismo , Triglicerídeos/metabolismo , Trifosfato de Adenosina/metabolismo , Adolescente , Adulto , Método Duplo-Cego , Metabolismo Energético/efeitos dos fármacos , Metabolismo Energético/fisiologia , Homeostase/efeitos dos fármacos , Homeostase/fisiologia , Humanos , Resistência à Insulina/fisiologia , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Avaliação de Resultados em Cuidados de Saúde , Ácido Úrico/metabolismo , Adulto Jovem
5.
J Cachexia Sarcopenia Muscle ; 15(2): 603-614, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38343303

RESUMO

BACKGROUND: Bed-rest (BR) of only a few days duration reduces muscle protein synthesis and induces skeletal muscle atrophy and insulin resistance, but the scale and juxtaposition of these events have not been investigated concurrently in the same individuals. Moreover, the impact of short-term exercise-supplemented remobilization (ESR) on muscle volume, protein turnover and leg glucose uptake (LGU) in humans is unknown. METHODS: Ten healthy males (24 ± 1 years, body mass index 22.7 ± 0.6 kg/m2) underwent 3 days of BR, followed immediately by 3 days of ESR consisting of 5 × 30 maximal voluntary single-leg isokinetic knee extensions at 90°/s each day. An isoenergetic diet was maintained throughout the study (30% fat, 15% protein and 55% carbohydrate). Resting LGU was calculated from arterialized-venous versus venous difference across the leg and leg blood flow during the steady-state of a 3-h hyperinsulinaemic-euglycaemic clamp (60 mU/m2/min) measured before BR, after BR and after remobilization. Glycogen content was measured in vastus lateralis muscle biopsy samples obtained before and after each clamp. Leg muscle volume (LMV) was measured using magnetic resonance imaging before BR, after BR and after remobilization. Cumulative myofibrillar protein fractional synthetic rate (FSR) and whole-body muscle protein breakdown (MPB) were measured over the course of BR and remobilization using deuterium oxide and 3-methylhistidine stable isotope tracers that were administered orally. RESULTS: Compared with before BR, there was a 45% decline in insulin-stimulated LGU (P < 0.05) after BR, which was paralleled by a reduction in insulin-stimulated leg blood flow (P < 0.01) and removal of insulin-stimulated muscle glycogen storage. These events were accompanied by a 43% reduction in myofibrillar protein FSR (P < 0.05) and a 2.5% decrease in LMV (P < 0.01) during BR, along with a 30% decline in whole-body MPB after 2 days of BR (P < 0.05). Myofibrillar protein FSR and LMV were restored by 3 days of ESR (P < 0.01 and P < 0.01, respectively) but not by ambulation alone. However, insulin-stimulated LGU and muscle glycogen storage were not restored by ESR. CONCLUSIONS: Three days of BR caused concurrent reductions in LMV, myofibrillar protein FSR, myofibrillar protein breakdown and insulin-stimulated LGU, leg blood flow and muscle glycogen storage in healthy, young volunteers. Resistance ESR restored LMV and myofibrillar protein FSR, but LGU and muscle glycogen storage remained depressed, highlighting divergences in muscle fuel and protein metabolism. Furthermore, ambulation alone did not restore LMV and myofibrillar protein FSR in the non-exercised contralateral limb, emphasizing the importance of exercise rehabilitation following even short-term BR.


Assuntos
Glucose , Músculo Esquelético , Masculino , Humanos , Glucose/metabolismo , Músculo Esquelético/metabolismo , Insulina/metabolismo , Glicogênio/metabolismo , Proteínas Musculares/metabolismo
6.
Eur J Clin Nutr ; 76(1): 65-73, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34040199

RESUMO

BACKGROUND/OBJECTIVES: Intermittent energy restriction (IER) may overcome poor long-term adherence with continuous energy restriction (CER), for weight reduction. We compared the effects of IER with CER for fasting and postprandial metabolism and appetite in metabolically healthy participants, in whom excess weight would not confound intrinsic metabolic differences. SUBJECTS/METHODS: In a 2-week randomised, parallel trial, 16 young, healthy-weight participants were assigned to either CER (20% below estimated energy requirements (EER)) or 5:2 IER (70% below EER on 2 non-consecutive days; 5 days at EER, per week). Metabolic and appetite regulation markers were assessed before and for 3 h after a liquid breakfast; followed by an ad libitum lunch; pre- and post-intervention. RESULTS: Weight loss was similar in both groups: -2.5 (95% CI, -3.4, -1.6) kg for 5:2 IER vs. -2.3 (-2.9, -1.7) kg for CER. There were no differences between groups for postprandial incremental area under the curve for serum insulin, blood glucose or subjective appetite ratings. Compared with CER, 5:2 IER led to a reduction in fasting blood glucose concentrations (treatment-by-time interaction, P = 0.018, η2p = 0.14). Similarly, compared with CER, there were beneficial changes in fasting composite appetite scores after 5:2 IER (treatment-by-time interaction, P = 0.0003, η2p = 0.35). CONCLUSIONS: There were no significant differences in postprandial insulinaemic, glycaemic or appetite responses between treatments. However, 5:2 IER resulted in greater improvements in fasting blood glucose, and beneficial changes in fasting subjective appetite ratings.


Assuntos
Restrição Calórica , Dieta Redutora , Apetite , Glicemia/metabolismo , Restrição Calórica/métodos , Dieta Redutora/métodos , Ingestão de Energia , Metabolismo Energético , Jejum , Humanos , Período Pós-Prandial , Redução de Peso/fisiologia
7.
J Cereb Blood Flow Metab ; 42(8): 1451-1462, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35209745

RESUMO

Behavioural responses to hypoglycaemia require coordinated recruitment of broadly distributed networks of interacting brain regions. We investigated hypoglycaemia-related changes in brain connectivity in people without diabetes (ND) and with type 1 diabetes with normal (NAH) or impaired (IAH) hypoglycaemia awareness. Two-step hyperinsulinaemic hypoglycaemic clamps were performed in 14 ND, 15 NAH and 22 IAH participants. BOLD timeseries were acquired at euglycaemia (5.0 mmol/L) and hypoglycaemia (2.6 mmol/L), with symptom and counter-regulatory hormone measurements. We investigated hypoglycaemia-related connectivity changes using established seed regions for the default mode (DMN), salience (SN) and central executive (CEN) networks and regions whose activity is modulated by hypoglycaemia: the thalamus and right inferior frontal gyrus (RIFG). Hypoglycaemia-induced changes in the DMN, SN and CEN were evident in NAH (all p < 0.05), with no changes in ND or IAH. However, in IAH there was a reduction in connectivity between regions within the RIFG (p = 0.001), not evident in the ND or NAH groups. We conclude that hypoglycaemia induces coordinated recruitment of the DMN and SN in diabetes with preserved hypoglycaemia awareness which is absent in IAH and ND. Changes in connectivity in the RIFG, a region associated with attentional modulation, may be key in impaired hypoglycaemia awareness.


Assuntos
Diabetes Mellitus Tipo 1 , Hipoglicemia , Encéfalo/metabolismo , Humanos , Hipoglicemiantes , Imageamento por Ressonância Magnética , Córtex Pré-Frontal
8.
J Cachexia Sarcopenia Muscle ; 13(6): 2999-3013, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36058634

RESUMO

BACKGROUND: Bed rest (BR) reduces whole-body insulin-stimulated glucose disposal (GD) and alters muscle fuel metabolism, but little is known about metabolic adaptation from acute to chronic BR nor the mechanisms involved, particularly when volunteers are maintained in energy balance. METHODS: Healthy males (n = 10, 24.0 ± 1.3 years), maintained in energy balance, underwent 3-day BR (acute BR). A second cohort matched for sex and body mass index (n = 20, 34.2 ± 1.8 years) underwent 56-day BR (chronic BR). A hyperinsulinaemic euglycaemic clamp (60 mU/m2 /min) was performed to determine rates of whole-body insulin-stimulated GD before and after BR (normalized to lean body mass). Indirect calorimetry was performed before and during steady state of each clamp to calculate rates of whole-body fuel oxidation. Muscle biopsies were taken to determine muscle glycogen, metabolite and intramyocellular lipid (IMCL) contents, and the expression of 191 mRNA targets before and after BR. Two-way repeated measures analysis of variance was used to detect differences in endpoint measures. RESULTS: Acute BR reduced insulin-mediated GD (Pre 11.5 ± 0.7 vs. Post 9.3 ± 0.6 mg/kg/min, P < 0.001), which was unchanged in magnitude following chronic BR (Pre 10.2 ± 0.4 vs. Post 7.9 ± 0.3 mg/kg/min, P < 0.05). This reduction in GD was paralleled by the elimination of the 35% increase in insulin-stimulated muscle glycogen storage following both acute and chronic BR. Acute BR had no impact on insulin-stimulated carbohydrate (CHO; Pre 3.69 ± 0.39 vs. Post 4.34 ± 0.22 mg/kg/min) and lipid (Pre 1.13 ± 0.14 vs. Post 0.59 ± 0.11 mg/kg/min) oxidation, but chronic BR reduced CHO oxidation (Pre 3.34 ± 0.18 vs. Post 2.72 ± 0.13 mg/kg/min, P < 0.05) and blunted the magnitude of insulin-mediated inhibition of lipid oxidation (Pre 0.60 ± 0.07 vs. Post 0.85 ± 0.06 mg/kg/min, P < 0.05). Neither acute nor chronic BR increased muscle IMCL content. Plentiful mRNA abundance changes were detected following acute BR, which waned following chronic BR and reflected changes in fuel oxidation and muscle glycogen storage at this time point. CONCLUSIONS: Acute BR suppressed insulin-stimulated GD and storage, but the extent of this suppression increased no further in chronic BR. However, insulin-mediated inhibition of fat oxidation after chronic BR was less than acute BR and was accompanied by blunted CHO oxidation. The juxtaposition of these responses shows that the regulation of GD and storage can be dissociated from substrate oxidation. Additionally, the shift in substrate oxidation after chronic BR was not explained by IMCL accumulation but reflected by muscle mRNA and pyruvate dehydrogenase kinase 4 protein abundance changes, pointing to lack of muscle contraction per se as the primary signal for muscle adaptation.


Assuntos
Glucose , Músculo Esquelético , Masculino , Humanos , Glucose/metabolismo , Músculo Esquelético/metabolismo , Insulina/metabolismo , Glicogênio/metabolismo , RNA Mensageiro/metabolismo , Lipídeos
9.
J Cereb Blood Flow Metab ; 40(4): 787-798, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31006309

RESUMO

Brain responses to low plasma glucose may be key to understanding the behaviors that prevent severe hypoglycemia in type 1 diabetes. This study investigated the impact of long duration, hypoglycemia aware type 1 diabetes on cerebral blood flow responses to hypoglycemia. Three-dimensional pseudo-continuous arterial spin labeling magnetic resonance imaging was performed in 15 individuals with type 1 diabetes and 15 non-diabetic controls during a two-step hyperinsulinemic glucose clamp. Symptom, hormone, global cerebral blood flow and regional cerebral blood flow responses to hypoglycemia were measured. Epinephrine release during hypoglycemia was attenuated in type 1 diabetes, but symptom score rose comparably in both groups. A rise in global cerebral blood flow did not differ between groups. Regional cerebral blood flow increased in the thalamus and fell in the hippocampus and temporal cortex in both groups. Type 1 diabetes demonstrated lesser anterior cingulate cortex activation; however, this difference did not survive correction for multiple comparisons. Thalamic cerebral blood flow change correlated with autonomic symptoms, and anterior cingulate cortex cerebral blood flow change correlated with epinephrine response across groups. The thalamus may thus be involved in symptom responses to hypoglycemia, independent of epinephrine action, while anterior cingulate cortex activation may be linked to counterregulation. Activation of these regions may have a role in hypoglycemia awareness and avoidance of problematic hypoglycemia.


Assuntos
Circulação Cerebrovascular/fisiologia , Diabetes Mellitus Tipo 1/fisiopatologia , Epinefrina/sangue , Hipoglicemia/fisiopatologia , Tálamo/irrigação sanguínea , Adolescente , Adulto , Glicemia/análise , Estudos de Casos e Controles , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/diagnóstico por imagem , Feminino , Glucose/administração & dosagem , Humanos , Hipoglicemia/sangue , Hipoglicemia/diagnóstico por imagem , Hipoglicemiantes/administração & dosagem , Insulina/administração & dosagem , Imageamento por Ressonância Magnética/métodos , Masculino , Pessoa de Meia-Idade , Neuroimagem/métodos , Tálamo/diagnóstico por imagem , Adulto Jovem
10.
Diabetes Care ; 42(11): 2127-2135, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31455689

RESUMO

OBJECTIVE: Impaired awareness of hypoglycemia (IAH) affects one-quarter of adults with type 1 diabetes and significantly increases the risk of severe hypoglycemia. Differences in regional brain responses to hypoglycemia may contribute to the susceptibility of this group to problematic hypoglycemia. This study investigated brain responses to hypoglycemia in hypoglycemia aware (HA) and IAH adults with type 1 diabetes, using three-dimensional pseudo-continuous arterial spin labeling (3D pCASL) functional MRI to measure changes in regional cerebral blood flow (CBF). RESEARCH DESIGN AND METHODS: Fifteen HA and 19 IAH individuals underwent 3D pCASL functional MRI during a two-step hyperinsulinemic glucose clamp. Symptom, hormone, global, and regional CBF responses to hypoglycemia (47 mg/dL [2.6 mmol/L]) were measured. RESULTS: In response to hypoglycemia, total symptom score did not change in those with IAH (P = 0.25) but rose in HA participants (P < 0.001). Epinephrine, cortisol, and growth hormone responses to hypoglycemia were lower in the IAH group (P < 0.05). Hypoglycemia induced a rise in global CBF (HA P = 0.01, IAH P = 0.04) but was not different between groups (P = 0.99). IAH participants showed reduced regional CBF responses within the thalamus (P = 0.002), right lateral orbitofrontal cortex (OFC) (P = 0.002), and right dorsolateral prefrontal cortex (P = 0.036) and a lesser decrease of CBF in the left hippocampus (P = 0.023) compared with the HA group. Thalamic and right lateral OFC differences survived Bonferroni correction. CONCLUSIONS: Responses to hypoglycemia of brain regions involved in arousal, decision making, and reward are altered in IAH. Changes in these pathways may disrupt IAH individuals' ability to recognize hypoglycemia, impairing their capacity to manage hypoglycemia effectively and benefit fully from conventional therapeutic pathways to restore awareness.


Assuntos
Nível de Alerta/fisiologia , Encéfalo/irrigação sanguínea , Tomada de Decisões/fisiologia , Diabetes Mellitus Tipo 1/psicologia , Hipoglicemia/psicologia , Adulto , Conscientização , Glicemia/metabolismo , Circulação Cerebrovascular/fisiologia , Diabetes Mellitus Tipo 1/sangue , Diabetes Mellitus Tipo 1/complicações , Feminino , Técnica Clamp de Glucose , Humanos , Hipoglicemia/diagnóstico por imagem , Hipoglicemia/etiologia , Imageamento por Ressonância Magnética/métodos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA