Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Bases de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Am Coll Cardiol ; 81(10): 994-1003, 2023 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-36889879

RESUMO

Valvular heart disease is a globally prevalent cause of morbidity and mortality, with both congenital and acquired clinical presentations. Tissue engineered heart valves (TEHVs) have the potential to radically shift the treatment landscape for valvular disease by functioning as life-long valve replacements that overcome the current limitations of bioprosthetic and mechanical valves. TEHVs are envisioned to meet these goals by functioning as bioinstructive scaffolds that guide the in situ generation of autologous valves capable of growth, repair, and remodeling within the patient. Despite their promise, clinical translation of in situ TEHVs has proven challenging largely because of the unpredictable and patient-specific nature of the TEHV and host interaction following implantation. In light of this challenge, we propose a framework for the development and clinical translation of biocompatible TEHVs, wherein the native valvular environment actively informs the valve's design parameters and sets the benchmarks by which it is functionally evaluated.


Assuntos
Doenças das Valvas Cardíacas , Próteses Valvulares Cardíacas , Humanos , Engenharia Tecidual , Doenças das Valvas Cardíacas/cirurgia , Valvas Cardíacas/cirurgia , Alicerces Teciduais
2.
Science ; 377(6602): 180-185, 2022 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-35857545

RESUMO

Helical alignments within the heart's musculature have been speculated to be important in achieving physiological pumping efficiencies. Testing this possibility is difficult, however, because it is challenging to reproduce the fine spatial features and complex structures of the heart's musculature using current techniques. Here we report focused rotary jet spinning (FRJS), an additive manufacturing approach that enables rapid fabrication of micro/nanofiber scaffolds with programmable alignments in three-dimensional geometries. Seeding these scaffolds with cardiomyocytes enabled the biofabrication of tissue-engineered ventricles, with helically aligned models displaying more uniform deformations, greater apical shortening, and increased ejection fractions compared with circumferential alignments. The ability of FRJS to control fiber arrangements in three dimensions offers a streamlined approach to fabricating tissues and organs, with this work demonstrating how helical architectures contribute to cardiac performance.


Assuntos
Ventrículos do Coração , Nanofibras , Desenho de Prótese , Engenharia Tecidual , Animais , Humanos , Miócitos Cardíacos , Nanofibras/química , Engenharia Tecidual/métodos , Alicerces Teciduais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA