Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Inorg Chem ; 63(19): 8531-8536, 2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38695157

RESUMO

Crystalline ceramics are candidate materials for the immobilization of radionuclides, particularly transuranics (such as U, Pu, and Am), arising from the nuclear fuel cycle. Due to the α-decay of transuranics and the associated recoil of the parent nucleus, crystalline materials may eventually be rendered amorphous through changes to the crystal lattice caused by these recoil events. Previous work has shown irradiation of titanate-based ceramics to change the local cation environment significantly, particularly in the case of Ti which was shown to change from 6- to 5-fold coordination. Here, this work expands the Ti-based study to investigate the behavior in Fe-based materials, using LaFeO3 as an example material. Irradiation was simulated by heavy ion implantation of the bulk LaFeO3 ceramic, with the resulting amorphous layer characterized with grazing angle X-ray absorption spectroscopy (GA-XAS). Insights into the Fe speciation changes exhibited by the amorphized surface layer were provided through quantitative analysis, including pre-edge analysis, and modeling of the extended X-ray absorption fine structure (EXAFS), of the GA-XAS data.

2.
J Synchrotron Radiat ; 29(Pt 1): 276-279, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985445

RESUMO

HERMES, a graphical user interface software tool, is presented, for pre-processing X-ray absorption spectroscopy (XAS) data from laboratory Rowland circle spectrometers, to meet the data handling needs of a growing community of practice. HERMES enables laboratory XAS data to be displayed for quality assessment, merging of data sets, polynomial fitting of smoothly varying data, and correction of data to the true energy scale and for dead-time and leakage effects. The software is written in Java 15 programming language, and runs on major computer operating systems, with graphics implementation using the JFreeChart toolkit. HERMES is freely available and distributed under an open source licence.


Assuntos
Laboratórios , Interface Usuário-Computador , Algoritmos , Software , Espectroscopia por Absorção de Raios X
3.
J Synchrotron Radiat ; 29(Pt 1): 89-102, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985426

RESUMO

Portland cement based grouts used for radioactive waste immobilization contain high replacement levels of supplementary cementitious materials, including blast-furnace slag and fly ash. The minerals formed upon hydration of these cements may have capacity for binding actinide elements present in radioactive waste. In this work, the minerals ettringite (Ca6Al2(SO4)3(OH)12·26H2O) and hydrotalcite (Mg6Al2(OH)16CO3·4H2O) were selected to investigate the importance of minor cement hydrate phases in sequestering and immobilizing UVI from radioactive waste streams. U LIII-edge X-ray absorption spectroscopy (XAS) was used to probe the UVI coordination environment in contact with these minerals. For the first time, solid-state 27Al magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy was applied to probe the Al coordination environment in these UVI-contacted minerals and make inferences on the UVI coordination, in conjunction with the X-ray spectroscopy analyses. The U LIII-edge XAS analysis of the UVI-contacted ettringite phases found them to be similar (>∼70%) to the uranyl oxyhydroxides present in a mixed becquerelite/metaschoepite mineral. Fitting of the EXAFS region, in combination with 27Al NMR analysis, indicated that a disordered Ca- or Al-bearing UVI secondary phase also formed. For the UVI-contacted hydrotalcite phases, the XAS and 27Al NMR data were interpreted as being similar to uranyl carbonate, that was likely Mg-containing.

4.
Inorg Chem ; 61(15): 5744-5756, 2022 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-35377149

RESUMO

Zirconolite is considered to be a suitable wasteform material for the immobilization of Pu and other minor actinide species produced through advanced nuclear separations. Here, we present a comprehensive investigation of Dy3+ incorporation within the self-charge balancing zirconolite Ca1-xZr1-xDy2xTi2O7 solid solution, with the view to simulate trivalent minor actinide immobilization. Compositions in the substitution range 0.10 ≤ x ≤ 1.00 (Δx = 0.10) were fabricated by a conventional mixed oxide synthesis, with a two-step sintering regime at 1400 °C in air for 48 h. Three distinct coexisting phase fields were identified, with single-phase zirconolite-2M identified only for x = 0.10. A structural transformation from zirconolite-2M to zirconolite-4M occurred in the range 0.20 ≤ x ≤ 0.30, while a mixed-phase assemblage of zirconolite-4M and cubic pyrochlore was evident at Dy concentrations 0.40 ≤ x ≤ 0.50. Compositions for which x ≥ 0.60 were consistent with single-phase pyrochlore. The formation of zirconolite-4M and pyrochlore polytype phases, with increasing Dy content, was confirmed by high-resolution transmission electron microscopy, coupled with selected area electron diffraction. Analysis of the Dy L3-edge XANES region confirmed that Dy was present uniformly as Dy3+, remaining analogous to Am3+. Fitting of the EXAFS region was consistent with Dy3+ cations distributed across both Ca2+ and Zr4+ sites in both zirconolite-2M and 4M, in agreement with the targeted self-compensating substitution scheme, whereas Dy3+ was 8-fold coordinated in the pyrochlore structure. The observed phase fields were contextualized within the existing literature, demonstrating that phase transitions in CaZrTi2O7-REE3+Ti2O7 binary solid solutions are fundamentally controlled by the ratio of ionic radius of REE3+ cations.

5.
J Synchrotron Radiat ; 28(Pt 6): 1672-1683, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34738921

RESUMO

Uranium speciation and redox behaviour is of critical importance in the nuclear fuel cycle. X-ray absorption near-edge spectroscopy (XANES) is commonly used to probe the oxidation state and speciation of uranium, and other elements, at the macroscopic and microscopic scale, within nuclear materials. Two-dimensional (2D) speciation maps, derived from microfocus X-ray fluorescence and XANES data, provide essential information on the spatial variation and gradients of the oxidation state of redox active elements such as uranium. In the present work, we elaborate and evaluate approaches to the construction of 2D speciation maps, in an effort to maximize sensitivity to the U oxidation state at the U L3-edge, applied to a suite of synthetic Chernobyl lava specimens. Our analysis shows that calibration of speciation maps can be improved by determination of the normalized X-ray absorption at excitation energies selected to maximize oxidation state contrast. The maps are calibrated to the normalized absorption of U L3 XANES spectra of relevant reference compounds, modelled using a combination of arctangent and pseudo-Voigt functions (to represent the photoelectric absorption and multiple-scattering contributions). We validate this approach by microfocus X-ray diffraction and XANES analysis of points of interest, which afford average U oxidation states in excellent agreement with those estimated from the chemical state maps. This simple and easy-to-implement approach is general and transferrable, and will assist in the future analysis of real lava-like fuel-containing materials to understand their environmental degradation, which is a source of radioactive dust production within the Chernobyl shelter.


Assuntos
Acidente Nuclear de Chernobyl , Urânio , Síncrotrons , Espectroscopia por Absorção de Raios X , Raios X
6.
Inorg Chem ; 60(23): 18112-18121, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34787401

RESUMO

The synthesis, characterization, and crystal structure of a novel (dominant) uranium(V) brannerite of composition U1.09(6)Ti1.29(3)Al0.71(3)O6 is reported, as determined from Rietveld analysis of the high-resolution neutron powder diffraction data. Examination of the UTi2-xAlxO6 system demonstrated the formation of brannerite-structured compounds with varying Al3+ and U5+ contents, from U0.93(6)Ti1.64(3)Al0.36(3)O6 to U0.89(6)Ti1.00(3)Al1.00(3)O6. Substitution of Al3+ for Ti4+, with U5+ charge compensation, resulted in near-linear changes in the b and c unit cell parameters and the overall unit cell volume, as expected from ionic radii considerations. The presence of U5+ as the dominant oxidation state in near-single-phase brannerite compositions was evidenced by complementary laboratory U L3-edge and high-energy-resolution fluorescence-detected U M4-edge X-ray absorption near-edge spectroscopy. No brannerite phase was found for compositions with Al3+/Ti4+ > 1, which would require a U6+ contribution for charge compensation. These data expand the crystal chemistry of uranium brannerites to the stabilization of dominant uranium(V) brannerites by the substitution of trivalent cations, such as Al3+, on the Ti4+ site.

7.
Inorg Chem ; 60(1): 195-205, 2021 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-33315376

RESUMO

Struvite-K (MgKPO4·6H2O) is a magnesium potassium phosphate mineral with naturally cementitious properties, which is finding increasing usage as an inorganic cement for niche applications including nuclear waste management and rapid road repair. Struvite-K is also of interest in sustainable phosphate recovery from wastewater and, as such, a detailed knowledge of the crystal chemistry and high-temperature behavior is required to support further laboratory investigations and industrial applications. In this study, the local chemical environments of synthetic struvite-K were investigated using high-field solid-state 25Mg and 39K MAS NMR techniques, alongside 31P MAS NMR and thermal analysis. A single resonance was present in each of the 25Mg and 39K MAS NMR spectra, reported here for the first time alongside the experimental and calculated isotropic chemical shifts, which were comparable to the available data for isostructural struvite (MgNH4PO4·6H2O). An in situ high-temperature XRD analysis of struvite-K revealed the presence of a crystalline-amorphous-crystalline transition that occurred between 30 and 350 °C, following the single dehydration step of struvite-K. Between 50 and 300 °C, struvite-K dehydration yielded a transient disordered (amorphous) phase identified here for the first time, denoted δ-MgKPO4. At 350 °C, recrystallization was observed, yielding ß-MgKPO4, commensurate with an endothermic DTA event. A subsequent phase transition to γ-MgKPO4 was observed on further heating, which reversed on cooling, resulting in the α-MgKPO4 structure stabilized at room temperature. This behavior was dissimilar from that of struvite exposed to high temperature, where NH4 liberation occurs at temperatures >50 °C, indicating that struvite-K could potentially withstand high temperatures via a transition to MgKPO4.

8.
Inorg Chem ; 60(4): 2553-2562, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33491452

RESUMO

Low-temperature soft chemical synthesis routes to transition-metal nitrides are of interest as an alternative to conventional high-temperature ammonolysis reactions involving large volumes of chemotoxic NH3 gas. One such method is the reaction between metal oxides and NaNH2 at ca. 200 °C to yield the counterpart nitrides; however, there remains uncertainty regarding the reaction mechanism and product phase assemblage (in particular, noncrystalline components). Here, we extend the chemical tool box and mechanistic understanding of such reactions, demonstrating the nitridation of Fe3O4 by reaction with NaNH2 at 170-190 °C, via a pseudomorphic reaction. The more reduced Fe3O4 precursor enabled nitride formation at lower temperatures than the previously reported equivalent reaction with Fe2O3. The product phase assemblage, characterized by X-ray diffraction, thermogravimetric analysis, and 57Fe Mössbauer spectroscopy, comprised 49-59 mol % ε-Fe2+xN, accompanied by 29-39 mol % FeO1-xNx and 8-14 mol % γ″-FeN. The oxynitride phase was apparently noncrystalline in the recovered product but could be crystallized by heating at 180 °C. Although synthesis of transition-metal nitrides is achieved by reaction of the counterpart oxide with NaNH2, it is evident from this investigation that the product phase assemblage may be complex, which could prove a limitation if the objective is to produce a single-phase product with well-defined electrical, magnetic, or other physical properties for applications. However, the significant yield of the FeO1-xNx oxynitride phase identified in this study opens the possibility for the synthesis of metastable oxynitride phases in high yield, by reaction of a metal oxide substrate with NaNH2, with either careful control of H2O concentration in the system or postsynthetic hydrolysis and crystallization.

9.
Environ Sci Technol ; 54(21): 13610-13618, 2020 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-32910645

RESUMO

Technetium-99 immobilization in low-temperature nuclear waste forms often relies on additives that reduce environmentally mobile pertechnetate (TcO4-) to insoluble Tc(IV) species. However, this is a short-lived solution unless reducing conditions are maintained over the hazardous life cycle of radioactive wastes (some ∼10,000 years). Considering recent experimental observations, this work explores how rapid formation of ettringite [Ca6Al2(SO4)3(OH)12·26(H2O)], a common mineral formed in cementitious waste forms, may be used to directly immobilize TcO4-. Results from ab initio molecular dynamics (AIMD) simulations and solid-phase characterization techniques, including synchrotron X-ray absorption, fluorescence, and diffraction methods, support successful incorporation of TcO4- into the ettringite crystal structure via sulfate substitution when synthesized by aqueous precipitation methods. One sulfate and one water are replaced with one TcO4- and one OH- during substitution, where Ca2+-coordinated water near the substitution site is deprotonated to form OH- for charge compensation upon TcO4- substitution. Furthermore, AIMD calculations support favorable TcO4- substitution at the SO42- site in ettringite rather than gypsum (CaSO4·2H2O, formed as a secondary mineral phase) by at least 0.76 eV at 298 K. These results are the first of their kind to suggest that ettringite may contribute to TcO4- immobilization and the overall lifetime performance of cementitious waste forms.


Assuntos
Resíduos Radioativos , Pertecnetato Tc 99m de Sódio , Minerais , Sulfatos
10.
Appl Environ Microbiol ; 79(14): 4325-35, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23666325

RESUMO

Microcosms containing sediment from an aquifer in Cambodia with naturally elevated levels of arsenic in the associated groundwater were used to evaluate the effectiveness of microbially mediated production of iron minerals for in situ As remediation. The microcosms were first incubated without amendments for 28 days, and the release of As and other geogenic chemicals from the sediments into the aqueous phase was monitored. Nitrate or a mixture of sulfate and lactate was then added to stimulate biological Fe(II) oxidation or sulfate reduction, respectively. Without treatment, soluble As concentrations reached 3.9 ± 0.9 µM at the end of the 143-day experiment. However, in the nitrate- and sulfate-plus-lactate-amended microcosms, soluble As levels decreased to 0.01 and 0.41 ± 0.13 µM, respectively, by the end of the experiment. Analyses using a range of biogeochemical and mineralogical tools indicated that sorption onto freshly formed hydrous ferric oxide (HFO) and iron sulfide mineral phases are the likely mechanisms for As removal in the respective treatments. Incorporation of the experimental results into a one-dimensional transport-reaction model suggests that, under conditions representative of the Cambodian aquifer, the in situ precipitation of HFO would be effective in bringing groundwater into compliance with the World Health Organization (WHO) provisional guideline value for As (10 ppb or 0.13 µM), although soluble Mn release accompanying microbial Fe(II) oxidation presents a potential health concern. In contrast, production of biogenic iron sulfide minerals would not remediate the groundwater As concentration below the recommended WHO limit.


Assuntos
Arsênio/metabolismo , Bactérias/metabolismo , Compostos Férricos/metabolismo , Compostos de Ferro/metabolismo , Poluentes Químicos da Água/metabolismo , Bactérias/classificação , Bactérias/genética , Biodegradação Ambiental , Camboja , Sedimentos Geológicos/química , Sedimentos Geológicos/microbiologia , Água Subterrânea/química , Água Subterrânea/microbiologia , Modelos Químicos , Dados de Sequência Molecular , Filogenia , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/metabolismo
11.
Environ Sci Technol ; 47(23): 13857-64, 2013 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-24147650

RESUMO

We present a novel methodology for determining the transport of technetium-99m, a γ-emitting metastable isomer of (99)Tc, through quartz sand and porous media relevant to the disposal of nuclear waste in a geological disposal facility (GDF). Quartz sand is utilized as a model medium, and the applicability of the methodology to determine radionuclide transport in engineered backfill cement is explored using the UK GDF candidate backfill cement, Nirex Reference Vault Backfill (NRVB), in a model system. Two-dimensional distributions in (99m)Tc activity were collected at millimeter-resolution using decay-corrected gamma camera images. Pulse-inputs of ~20 MBq (99m)Tc were introduced into short (<10 cm) water-saturated columns at a constant flow of 0.33 mL min(-1). Changes in calibrated mass distribution of (99m)Tc at 30 s intervals, over a period of several hours, were quantified by spatial moments analysis. Transport parameters were fitted to the experimental data using a one-dimensional convection-dispersion equation, yielding transport properties for this radionuclide in a model GDF environment. These data demonstrate that (99)Tc in the pertechnetate form (Tc(VII)O4(-)) does not sorb to cement backfill during transport under model conditions, resulting in closely conservative transport behavior. This methodology represents a quantitative development of radiotracer imaging and offers the opportunity to conveniently and rapidly characterize transport of gamma-emitting isotopes in opaque media, relevant to the geological disposal of nuclear waste and potentially to a wide variety of other subsurface environments.


Assuntos
Sistemas Computacionais , Câmaras gama , Resíduos Radioativos/análise , Eliminação de Resíduos , Tecnécio/análise , Adsorção , Calibragem , Análise Numérica Assistida por Computador , Porosidade , Quartzo/química
12.
Npj Mater Degrad ; 7(1): 25, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37041969

RESUMO

Alternative UO2 nuclear fuels, incorporating Cr as a dopant, are currently in use in light-water reactors. Dissolution experiments using Cr-doped UO2, performed as a function of Cr content in a simplified groundwater solution and under oxic conditions, established that the addition of Cr to the UO2 matrix systematically reduced the normalised dissolution rate of U at 25 and 40 °C. This effect was most notable under dilute solution conditions, and is the result of galvanic coupling between Cr and U, resulting from the presence of Cr2+ in the UO2 matrix, as corroborated by activation energy determination. Under conditions of solution saturation, where schoepite ((UO2)8O2(OH)12·(H2O)12) and Na2U2O7·6H2O were identified as secondary phases, the rate of U dissolution was invariant with Cr content. Moreover, at 60 °C, the trend was reversed and the rate of U dissolution increased with increasing Cr content. Under these conditions, other factors, including U solubility or bicarbonate-surface interactions, exert a stronger influence on the U dissolution kinetics than Cr. Increased grain size, a feature of Cr-doped UO2 fuel, was also found to reduce the normalised dissolution rate of U. In establishing the mechanisms by which Cr dopants influence UO2 fuel dissolution, it can be concluded that, overall, Cr-doped UO2 nuclear fuel possesses similar dissolution kinetics to undoped UO2 fuel, giving confidence for its eventual disposal in a geological facility.

13.
Sci Rep ; 13(1): 12776, 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37550380

RESUMO

ThTi2O6 derived compounds with the brannerite structure were designed, synthesised, and characterised with the aim of stabilising incorporation of U5+ or U6+, at dilute concentration. Appropriate charge compensation was targeted by co-substitution of Gd3+, Ca2+, Al3+, or Cr3+, on the Th or Ti site. U L3 edge X-ray Absorption Near Edge Spectroscopy (XANES) and High Energy Resolution Fluorescence Detected U M4 edge XANES evidenced U5+ as the major oxidation state in all compounds, with a minor fraction of U6+ (2-13%). The balance of X-ray and Raman spectroscopy data support uranate, rather than uranyl, as the dominant U6+ speciation in the reported brannerites. It is considered that the U6+ concentration was limited by unfavourable electrostatic repulsion arising from substitution in the octahedral Th or Ti sites, which share two or three edges, respectively, with neighbouring polyhedra in the brannerite structure.

14.
Sci Rep ; 13(1): 10328, 2023 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365272

RESUMO

Crystal chemical design principles were applied to synthesise novel U4+ dominant and titanium excess betafite phases Ca1.15(5)U0.56(4)Zr0.17(2)Ti2.19(2)O7 and Ca1.10(4)U0.68(4)Zr0.15(3)Ti2.12(2)O7, in high yield (85-95 wt%), and ceramic density reaching 99% of theoretical. Substitution of Ti on the A-site of the pyrochlore structure, in excess of full B-site occupancy, enabled the radius ratio (rA/rB = 1.69) to be tuned into the pyrochlore stability field, approximately 1.48 ≲ rA/rB ≲ 1.78, in contrast to the archetype composition CaUTi2O7 (rA/rB = 1.75). U L3-edge XANES and U 4f7/2 and U 4f5/2 XPS data evidenced U4+ as the dominant speciation, consistent with the determined chemical compositions. The new betafite phases, and further analysis reported herein, point to a wider family of actinide betafite pyrochlores that could be stabilised by application of the underlying crystal chemical principle applied here.

15.
Sci Rep ; 13(1): 3374, 2023 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-36854709

RESUMO

Portland cement-based grouts used for radioactive waste immobilisation contain a Ca- and Si-rich binder phase, known as calcium-silicate-hydrate (C-S-H). Depending on the blend of cement used, the Ca/Si ratio can vary considerably. A range of C-S-H minerals with Ca/Si ratios from 0.6 to 1.6 were synthesised and contacted with aqueous U(VI) at 0.5 mM and 10 mM concentrations. Solid-state 29Si MAS-NMR spectroscopy was applied to probe the Si coordination environment in U(VI)-contacted C-S-H minerals and, in conjunction with U LIII-edge X-ray absorption spectroscopy analysis, inferences of the fate of U(VI) in these systems were made. At moderate or high Ca/Si ratios, uranophane-type uranyl silicates or Ca-uranates dominated, while at the lowest Ca/Si ratios, the formation of a Ca-bearing uranyl silicate mineral, similar to haiweeite (Ca[(UO2)2Si5O12(OH)2]·3H2O) or Ca-bearing weeksite (Ca2(UO2)2Si6O15·10H2O) was identified. This study highlights the influence of Ca/Si ratio on uranyl sequestration, of interest in the development of post-closure safety models for U-bearing radioactive waste disposal.

16.
Sci Rep ; 13(1): 9329, 2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291129

RESUMO

Indium (In) is a neutron absorbing additive that could feasibly be used to mitigate criticality in ceramic wasteforms containing Pu in the immobilised form, for which zirconolite (nominally CaZrTi2O7) is a candidate host phase. Herein, the solid solutions Ca1-xZr1-xIn2xTi2O7 (0.10 ≤ x ≤ 1.00; air synthesis) and Ca1-xUxZrTi2-2xIn2xO7 (x = 0.05, 0.10; air and argon synthesis) were investigated by conventional solid state sintering at a temperature of 1350 °C maintained for 20 h, with a view to characterise In3+ substitution behaviour in the zirconolite phase across the Ca2+, Zr4+ and Ti4+ sites. When targeting Ca1-xZr1-xIn2xTi2O7, single phase zirconolite-2M was formed at In concentrations of 0.10 ≤ x ≤ 0.20; beyond x ≥ 0.20, a number of secondary In-containing phases were stabilised. Zirconolite-2M remained a constituent of the phase assemblage up to a concentration of x = 0.80, albeit at relatively low concentration beyond x ≥ 0.40. It was not possible to synthesise the In2Ti2O7 end member compound using a solid state route. Analysis of the In K-edge XANES spectra in the single phase zirconolite-2M compounds confirmed that the In inventory was speciated as trivalent In3+, consistent with targeted oxidation state. However, fitting of the EXAFS region using the zirconolite-2M structural model was consistent with In3+ cations accommodated within the Ti4+ site, contrary to the targeted substitution scheme. When deploying U as a surrogate for immobilised Pu in the Ca1-xUxZrTi2-2xIn2xO7 solid solution, it was demonstrated that, for both x = 0.05 and 0.10, In3+ was successfully able to stabilise zirconolite-2M when U was distributed predominantly as both U4+ and average U5+, when synthesised under argon and air, respectively, determined by U L3-edge XANES analysis.


Assuntos
Índio , Espectroscopia por Absorção de Raios X , Argônio , Oxirredução
17.
Commun Chem ; 5(1): 163, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36697907

RESUMO

Advanced Cr-doped UO2 fuels are essential for driving safe and efficient generation of nuclear energy. Although widely deployed, little is known about their fundamental chemistry, which is a critical gap for development of new fuel materials and radioactive waste management strategies. Utilising an original approach, we directly evidence the chemistry of Cr(3+)2O3-doped U(4+)O2. Advanced high-flux, high-spectral purity X-ray absorption spectroscopy (XAS), corroborated by diffraction, Raman spectroscopy and high energy resolved fluorescence detection-XAS, is used to establish that Cr2+ directly substitutes for U4+, accompanied by U5+ and oxygen vacancy charge compensation. Extension of the analysis to heat-treated simulant nuclear fuel reveals a mixed Cr2+/3+ oxidation state, with Cr in more than one physical form, explaining the substantial discrepancies that exist in the literature. Successful demonstration of this analytical advance, and the scientific underpinning it provides, opens opportunities for an expansion in the range of dopants utilised in advanced UO2 fuels.

18.
J Hazard Mater ; 413: 125250, 2021 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-33581672

RESUMO

Ion exchange materials are used widely for the removal of radionuclides from contaminated water at nuclear licensed sites, during normal operating procedures, decommissioning and in accident clean-up, such as the ongoing recovery operation at the Fukushima Daiichi nuclear power plant. Framework silicate inorganic ion exchange materials, such as chabazite ((Na0.14K1.03Ca1.00Mg0.17)[Al3.36Si8.53O24]•9.7H2O), have shown particular selectivity towards 137Cs uptake, but their safe storage poses a number challenges requiring conditioning into passively safe waste packages of minimal volume. We demonstrate the transformation of Cs-exchanged chabazite into a glass-ceramic wasteform by hot isostatic pressing to produce a durable consolidated monolith. The application of heat and pressure resulted in the collapse of the chabazite framework, forming crystalline Cs-substituted leucite (Cs0.15(3)K0.57(4)Al0.90(4)Si2.24(5)O6) incorporated within a K2O-CaO-MgO-Al2O3-SiO2 glass. The Cs partitioned preferentially into the Cs/K-feldspar which incorporated ~77% of the Cs2O inventory. Analysis of the chemical durability of the glass-ceramic wasteform revealed that the Cs release rates were comparable or lower than those reported for vitrified high level and intermediate level wastes. Overall, hot isostatic pressing was demonstrated to be an effective processing technology for conditioning spent inorganic ion exchange materials by yielding durable and passively safe wasteforms.

19.
J Hazard Mater ; 401: 123764, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33113733

RESUMO

Materials from GeoMelt® In-Container Vitrification (ICV)™ of simulant UK nuclear wastes were characterised to understand the partitioning of elements, including inactive surrogates for radionuclide species of interest, within the heterogeneous products. Aqueous durability analysis was performed to assess the potential disposability of the resulting wasteforms. The vitrification trial aimed to immobilise a variety of simulant legacy waste streams representative of decommissioning operations in the UK, including plutonium contaminated material, Magnox sludges and ion-exchange materials, which were vitrified upon the addition of glass forming additives. Two trials with different wastes were characterised, with the resultant vitreous wasteforms comprising olivine and pyroxene crystalline minerals within glassy matrices. Plutonium surrogate elements were immobilised within the glassy fraction rather than partitioning into crystalline phases. All vitrified products exhibited comparable or improved durability to existing UK high level waste vitrified nuclear wasteforms over a 28 day period.

20.
Sci Rep ; 8(1): 5320, 2018 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-29593253

RESUMO

Calcium-aluminoborate (CAB) glasses were developed to sequester new waste compositions made of several rare-earth oxides generated from the pyrochemical reprocessing of spent nuclear fuel. Several important wasteform properties such as waste loading, processability and chemical durability were evaluated. The maximum waste loading of the CAB compositions was determined to be ~56.8 wt%. Viscosity and the electrical conductivity of the CAB melt at 1300 °C were 7.817 Pa·s and 0.4603 S/cm, respectively, which satisfies the conditions for commercial cold-crucible induction melting (CCIM) process. Addition of rare-earth oxides to CAB glasses resulted in dramatic decreases in the elemental releases of B and Ca in aqueous dissolution experiments. Normalized elemental releases from product consistency standard chemical durability test were <3.62·10-5 g·m-2 for Nd, 0.009 g·m-2 for Al, 0.067 g·m-2 for B and 0.073 g·m-2 for Ca (at 90, after 7 days, for SA/V = 2000m-1); all meet European and US regulation limits. After 20 d of dissolution, a hydrated alteration layer of ~ 200-nm-thick, Ca-depleted and Nd-rich, was formed at the surface of CAB glasses with 20 mol% Nd2O3 whereas boehmite [AlO(OH)] secondary crystalline phases were formed in pure CAB glass that contained no Nd2O3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA