Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Heart Circ Physiol ; 326(4): H1006-H1016, 2024 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-38363211

RESUMO

Preeclampsia (PE), a leading cause of maternal/fetal morbidity and mortality, is a hypertensive pregnancy disorder with end-organ damage that manifests after 20 wk of gestation. PE is characterized by chronic immune activation and endothelial dysfunction. Clinical studies report reduced IL-33 signaling in PE. We use the Reduced Uterine Perfusion Pressure (RUPP) rat model, which mimics many PE characteristics including reduced IL-33, to identify mechanisms mediating PE pathophysiology. We hypothesized that IL-33 supplementation would improve blood pressure (BP), inflammation, and oxidative stress (ROS) during placental ischemia. We implanted intraperitoneal mini-osmotic pumps infusing recombinant rat IL-33 (1 µg/kg/day) into normal pregnant (NP) and RUPP rats from gestation day 14 to 19. We found that IL-33 supplementation in RUPP rats reduces maternal blood pressure and improves the uterine artery resistance index (UARI). In addition to physiological improvements, we found decreased circulating and placental cytolytic Natural Killer cells (cNKs) and decreased circulating, placental, and renal TH17s in IL-33-treated RUPP rats. cNK cell cytotoxic activity also decreased in IL-33-supplemented RUPP rats. Furthermore, renal ROS and placental preproendothelin-1 (PPET-1) decreased in RUPP rats treated with IL-33. These findings demonstrate a role for IL-33 in controlling vascular function and maternal BP during pregnancy by decreasing inflammation, renal ROS, and PPET-1 expression. These data suggest that IL-33 may have therapeutic potential in managing PE.NEW & NOTEWORTHY Though decreased IL-33 signaling has been clinically associated with PE, the mechanisms linking this signaling pathway to overall disease pathophysiology are not well understood. This study provides compelling evidence that mechanistically links reduced IL-33 with the inflammatory response and vascular dysfunction observed in response to placental ischemia, such as in PE. Data presented in this study submit the IL-33 signaling pathway as a possible therapeutic target for the treatment of PE.


Assuntos
Hipertensão , Interleucina-33 , Pré-Eclâmpsia , Artéria Uterina , Animais , Feminino , Gravidez , Ratos , Pressão Sanguínea/efeitos dos fármacos , Suplementos Nutricionais , Modelos Animais de Doenças , Hipertensão/tratamento farmacológico , Inflamação/metabolismo , Interleucina-33/farmacologia , Isquemia/metabolismo , Placenta/irrigação sanguínea , Pré-Eclâmpsia/tratamento farmacológico , Pré-Eclâmpsia/metabolismo , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Artéria Uterina/efeitos dos fármacos , Artéria Uterina/metabolismo
2.
J Cardiovasc Pharmacol ; 83(6): 635-645, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38547515

RESUMO

ABSTRACT: Prepubertal obesity is growing at an alarming rate and is now considered a risk factor for renal injury. Recently, we reported that the early development of renal injury in obese Dahl salt-sensitive (SS) leptin receptor mutant (SS LepR mutant) rats was associated with increased T-cell infiltration and activation before puberty. Therefore, the current study investigated the effect of inhibiting T-cell activation with abatacept on the progression of renal injury in young obese SS LepR mutant rats before puberty. Four-week-old SS and SS LepR mutant rats were treated with IgG or abatacept (1 mg/kg; ip, every other day) for 4 weeks. Abatacept reduced the renal infiltration of T cells by almost 50% in SS LepR mutant rats. Treatment with abatacept decreased the renal expression of macrophage inflammatory protein-3 alpha while increasing IL-4 in SS LepR mutant rats without affecting SS rats. While not having an impact on blood glucose levels, abatacept reduced hyperinsulinemia and plasma triglycerides in SS LepR mutant rats without affecting SS rats. We did not observe any differences in the mean arterial pressure among the groups. Proteinuria was markedly higher in SS LepR mutant rats than in SS rats throughout the study, and treatment with abatacept decreased proteinuria by about 40% in SS LepR mutant rats without affecting SS rats. We observed significant increases in glomerular and tubular injury and renal fibrosis in SS LepR mutant rats versus SS rats, and chronic treatment with abatacept significantly reduced these renal abnormalities in SS LepR mutant rats. These data suggest that renal T-cell activation contributes to the early progression of renal injury associated with prepubertal obesity.


Assuntos
Abatacepte , Rim , Obesidade , Ratos Endogâmicos Dahl , Receptores para Leptina , Linfócitos T , Animais , Abatacepte/farmacologia , Obesidade/tratamento farmacológico , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Rim/patologia , Rim/efeitos dos fármacos , Rim/metabolismo , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Receptores para Leptina/deficiência , Masculino , Ratos , Progressão da Doença , Modelos Animais de Doenças , Proteinúria/tratamento farmacológico , Nefropatias/patologia , Nefropatias/tratamento farmacológico , Nefropatias/metabolismo , Maturidade Sexual/efeitos dos fármacos
3.
Int J Mol Sci ; 25(2)2024 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-38255935

RESUMO

Preeclampsia (PE) is characterized by maternal hypertension, fetal growth restriction (FGR), and increased inflammation and populations of cytotoxic NK cells (cNKs) and inflammatory T-Helper 17 cells (TH17s). Both cytotoxic NK cells and TH17 cells are heavily influenced via IL-1ß signaling. Caspase 1 activity leads to the release of the inflammatory cytokine IL-1ß, which is increased in women with PE. Therefore, we tested the hypothesis that the inhibition of Caspase 1 with VX-765 in rats with reduced uterine perfusion pressure (RUPP) will attenuate PE pathophysiology. On gestation day (GD) 14, timed pregnant Sprague-Dawley rats underwent the RUPP or Sham procedure and were separated into groups that received either vehicle or VX-765 (50 mg/kg/day i.p.). On GD19, MAP was measured via carotid catheter and blood and tissues were collected. Bio-Plex and flow cytometry analysis were performed on placental tissues. Placental IL-1ß was increased in the RUPP rats vs. the Sham rats and treatment with VX-765 reduced IL-1ß in the RUPP rats. Caspase 1 inhibition reduced placental cNKs and TH17s in RUPP rats compared to vehicle-treated RUPP rats. Increased MAP was observed in RUPP rats compared with Sham rats and was reduced in RUPP + VX-765 rats. Placental reactive oxygen species (ROS) were elevated in RUPP rats compared to Sham rats. VX-765 administration reduced ROS in treated RUPP rats. Caspase 1 inhibition increased the number of live pups, yet had no effect on fetal weight or placental efficiency in the treated groups. In conclusion, Caspase 1 inhibition reduces placental IL-1ß, inflammatory TH17 and cNK populations, and reduces MAP in RUPP rats. These data suggest that Caspase 1 is a key contributor to PE pathophysiology. This warrants further investigation of Caspase 1 as a potential therapeutic target to improve maternal outcomes in PE.


Assuntos
Antineoplásicos , Caspase 1 , Pré-Eclâmpsia , Animais , Feminino , Humanos , Gravidez , Ratos , Pressão Sanguínea , Caspase 1/metabolismo , Células Matadoras Naturais , Placenta , Pré-Eclâmpsia/tratamento farmacológico , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio , Células Th17
4.
Am J Physiol Cell Physiol ; 324(2): C458-C466, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36571442

RESUMO

Recently, there has been increased recognition of the importance of sex as a biological factor affecting disease and health. Many preclinical studies have suggested that males may experience a less favorable outcome in response to sepsis than females. The underlying mechanisms for these differences are still largely unknown but are thought to be related to the beneficial effects of estrogen. Furthermore, the immunosuppressive role of testosterone is also thought to contribute to the sex-dependent differences that are present in clinical sepsis. There are still significant knowledge gaps in this field. This mini-review will provide a brief overview of sex-dependent variables in relation to sepsis and the cardiovascular system. Preclinical animal models for sepsis research will also be discussed. The intent of this mini-review is to inspire interest for future considerations of sex-related variables in sepsis that should be addressed to increase our understanding of the underlying mechanisms in sepsis-induced cardiovascular dysfunction for the identification of therapeutic targets and improved sepsis management and treatment.


Assuntos
Sistema Cardiovascular , Sepse , Animais , Feminino , Masculino , Caracteres Sexuais , Coração , Sepse/tratamento farmacológico , Estrogênios
5.
Am J Physiol Renal Physiol ; 325(1): F87-F98, 2023 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-37167270

RESUMO

Recently, we have reported that the early progression of proteinuria in the obese Dahl salt-sensitive (SS) leptin receptor mutant (SSLepRmutant) strain was associated with increased renal macrophage infiltration before puberty. Macrophages can be divided into two distinct phenotypes: M1 (proinflammatory) and M2 (anti-inflammatory). Moreover, previous studies have demonstrated that interleukin (IL)-25 converts resting macrophages and M1 into M2. Therefore, the present study examined whether treatment with IL-25 would reduce the early progression of renal injury in SSLepRmutant rats by increasing renal M2. We also investigated the impact of IL-25 on M2 subtypes: M2a (wound healing/anti-inflammatory), M2b (immune mediated/proinflammatory), M2c (regulatory/anti-inflammatory), and M2d (tumor associated/proangiogenic). Four-wk-old SS and SSLepRmutant rats were treated with either control (IgG) or IL-25 (1 µg/day ip every other day) for 4 wk. The kidneys from SSLepRmutant rats displayed progressive proteinuria and renal histopathology versus SS rats. IL-25 treatment had no effect on these parameters in SS rats. However, in the SSLepRmutant strain, proteinuria was markedly reduced after IL-25 treatment. Chronic treatment with IL-25 significantly decreased glomerular and tubular injury and renal fibrosis in the SSLepRmutant strain. Although the administration of IL-25 did not change total renal macrophage infiltration in both SS and SSLepRmutant rats, IL-25 increased M2a by >50% and reduced M1 by 60% in the kidneys of SSLepRmutant rats. Overall, these data indicate that IL-25 reduces the early progression of renal injury in SSLepRmutant rats by inducing M2a and suppressing M1 and suggest that IL-25 may be a therapeutic target for renal disease associated with obesity. NEW & NOTEWORTHY For the past few decades, immune cells and inflammatory cytokines have been demonstrated to play an important role in the development of renal disease. The present study provides strong evidence that interleukin-25 slows the early progression of renal injury in obese Dahl salt-sensitive rats before puberty by increasing systemic anti-inflammatory cytokines and renal M2a macrophages.


Assuntos
Interleucina-17 , Nefropatias , Ratos , Animais , Ratos Endogâmicos Dahl , Interleucina-17/farmacologia , Rim/patologia , Nefropatias/patologia , Proteinúria/patologia , Obesidade/complicações , Obesidade/patologia , Cloreto de Sódio na Dieta/farmacologia , Macrófagos/patologia
6.
Am J Physiol Renal Physiol ; 324(2): F179-F192, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36417275

RESUMO

Preeclampsia, new onset hypertension during pregnancy, is associated with activated T helper cells (Th) and B cells secreting agonistic autoantibodies against the angiotensin II type 1 receptor (AT1-AA). The reduced uterine perfusion pressure (RUPP) model of placental ischemia recapitulates these characteristics. We have shown that Th-B cell communication contributes to AT1-AA and symptoms of preeclampsia in the RUPP rat. B2 cells are classical B cells that communicate with Th cells and are then transformed into memory B cells. We hypothesize that B2 cells cause hypertension, natural killer (NK) cell activation, and complement activation during pregnancy through the production of AT1-AA. To test this hypothesis, total splenic B cells and B2 cells were isolated from normal pregnant (NP) or RUPP rats on gestational day (GD)19 and adoptively transferred into GD12 NP rats. A group of recipient rats was treated with a specific inhibitor peptide of AT1-AA. On GD19, mean arterial pressure was measured, tissues were collected, activated NK cells were measured by flow cytometry, and AT1-AA was measured by cardiomyocyte assay. NP recipients of RUPP B cells or RUPP B2 cells had increased mean arterial pressure, AT1-AA, and circulating activated NK cells compared with recipients of NP B cells. Hypertension in NP recipients of RUPP B cells or RUPP B2 was attenuated with AT1-AA blockade. This study demonstrates that B cells and B2 cells from RUPP rats cause hypertension and increased AT1-AA and NK cell activation in response to placental ischemia during pregnancy.NEW & NOTEWORTHY This study demonstrates that placental ischemia-stimulated B2 cells induce hypertension and circulating natural killer cell activation and angiotensin II type 1 receptor production in normal pregnant rats.


Assuntos
Hipertensão , Pré-Eclâmpsia , Humanos , Ratos , Gravidez , Feminino , Animais , Placenta , Autoanticorpos , Receptor Tipo 1 de Angiotensina/metabolismo , Ratos Sprague-Dawley , Células Matadoras Naturais/metabolismo , Isquemia/metabolismo , Pressão Sanguínea/fisiologia
7.
Am J Physiol Renal Physiol ; 325(3): F363-F376, 2023 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-37498548

RESUMO

Prepubertal obesity is currently an epidemic and is considered as a major risk factor for renal injury. Previous studies have demonstrated that insulin resistance contributes to renal injury in obesity, independent of diabetes. However, studies examining the relationship between insulin resistance and renal injury in obese children are lacking. Recently, we reported that progressive renal injury in Dahl salt-sensitive (SS) leptin receptor mutant (SSLepRmutant) rats was associated with insulin resistance before puberty. Therefore, the aim of the present study was to examine whether decreasing insulin resistance with metformin will reduce renal injury in SSLepRmutant rats. Four-wk-old SS and SSLepRmutant rats were separated into the following two groups: 1) vehicle and 2) metformin (300 mg/kg/day) via chow diet for 4 wk. Chronic administration of metformin markedly reduced insulin resistance and dyslipidemia in SSLepRmutant rats. We did not detect any differences in mean arterial pressure between vehicle and metformin-treated SS and SSLepRmutant rats. Proteinuria was significantly greater in SSLepRmutant rats versus SS rats throughout the study, and metformin administration significantly reduced proteinuria in SSLepRmutant rats. At the end of the protocol, metformin prevented the renal hyperfiltration observed in SSLepRmutant rats versus SS rats. Glomerular and tubular injury and renal inflammation and fibrosis were significantly higher in vehicle-treated SSLepRmutant rats versus SS rats, and metformin reduced these parameters in SSLepRmutant rats. These data suggest that reducing insulin resistance with metformin prevents renal hyperfiltration and progressive renal injury in SSLepRmutant rats before puberty and may be therapeutically useful in managing renal injury during prepubertal obesity.NEW & NOTEWORTHY Childhood/prepubertal obesity is a public health concern that is associated with early signs of proteinuria. Insulin resistance has been described in obese children. However, studies investigating the role of insulin resistance during childhood obesity-associated renal injury are limited. This study provides evidence of an early relationship between insulin resistance and renal injury in a rat model of prepubertal obesity. These data also suggest that reducing insulin resistance with metformin may be renoprotective in obese children.


Assuntos
Hipertensão , Resistência à Insulina , Metformina , Obesidade Infantil , Ratos , Animais , Ratos Endogâmicos Dahl , Metformina/farmacologia , Obesidade Infantil/complicações , Rim , Proteinúria/prevenção & controle , Cloreto de Sódio na Dieta , Hipertensão/tratamento farmacológico , Hipertensão/etiologia , Pressão Sanguínea
8.
J Pharmacol Exp Ther ; 384(3): 445-454, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36507846

RESUMO

Recently, we reported that the early progression of renal injury in obese Dahl salt-sensitive leptin receptor mutant (SSLepRmutant) rats was associated with increased macrophage inflammatory protein 3-α (MIP3α) expression prior to puberty. Therefore, this study tested the hypothesis that MIP3α plays a role in recruiting immune cells, thereby triggering renal inflammation and early progressive renal injury in SSLepRmutant rats prior to puberty. Four-week-old Dahl salt-sensitive (SS) and SSLepRmutant rats either served as control (IgG; intraperitoneal, every other day) or received MIP3α-neutralizing antibody (MNA; 100 µg/kg) for 4 weeks. MNA reduced circulating and renal MIP3α levels and proinflammatory immune cells by 50%. Although MNA treatment did not affect blood glucose and plasma cholesterol levels, MNA markedly decreased insulin resistance and triglyceride levels in SSLepRmutant rats. We observed no differences in mean arterial pressure (MAP) between SS and SSLepRmutant rats, and MNA had no effect on MAP in either strain. Proteinuria was significantly increased in SSLepRmutant rats versus SS rats over the course of the study. Treatment with MNA markedly decreased proteinuria in SSLepRmutant rats while not affecting SS rats. Also, MNA decreased glomerular and tubular injury and renal fibrosis in SSLepRmutant rats while not affecting SS rats. Overall, these data indicate that MIP3α plays an important role in renal inflammation during the early progression of renal injury in obese SSLepRmutant rats prior to puberty. These data also suggest that MIP3α may be a novel therapeutic target to inhibit insulin resistance and prevent progressive proteinuria in obese children. SIGNIFICANCE STATEMENT: Childhood obesity is increasing at an alarming rate and is now being associated with renal disease. Although most studies have focused on the mechanisms of renal injury associated with adult obesity, few studies have examined the mechanisms of renal injury involved during childhood obesity. In the current study, we observed that the progression of renal injury in obese Dahl salt-sensitive leptin receptor mutant rats was associated with an increase in MIP3α, a chemokine, before puberty, and inhibition of MIP3α markedly reduced renal injury.


Assuntos
Hipertensão , Resistência à Insulina , Nefropatias , Obesidade Infantil , Ratos , Animais , Ratos Endogâmicos Dahl , Obesidade Infantil/metabolismo , Receptores para Leptina/metabolismo , Receptores para Leptina/uso terapêutico , Rim , Nefropatias/metabolismo , Proteinúria/metabolismo , Cloreto de Sódio na Dieta/metabolismo , Inflamação/metabolismo , Hipertensão/tratamento farmacológico , Pressão Sanguínea
9.
Am J Physiol Regul Integr Comp Physiol ; 324(4): R556-R567, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-36847598

RESUMO

Preeclampsia (PE) is a pregnancy-specific hypertensive disorder with end-organ damage that presents after 20 wk of gestation. PE pathophysiology often includes vascular dysfunction and increased inflammation that continues to damage patient health even after PE resolves. Currently, there is no cure for PE beyond delivery of the fetal-placental unit. Previous clinical studies have identified elevated placental NLRP3 expression in patients with PE and suggest NLRP3 as a potential therapeutic target. In this study, we examined the effect of NLRP3 inhibition on PE pathophysiology in the reduced uterine perfusion pressure (RUPP) model rat using MCC950 (20 mg/kg/day) or esomeprazole (3.5 mg/kg/day). We hypothesized that increased NLRP3 in response to placental ischemia impairs anti-inflammatory IL-33 signaling to induce T-helper 17 cell (TH17) and cytolytic NK cell (cNK) activation, which is known to mediate oxidative stress and vascular dysfunction leading to maternal HTN and intrauterine growth restriction. RUPP rats had significantly higher placental NLRP3 expression, maternal blood pressure, fetal reabsorption rate, vascular resistance, oxidative stress, cNKs and TH17s, and decreased IL-33 compared with normal pregnant (NP) rats. NLRP3 inhibition, with either treatment, significantly reduced placental NLRP3 expression, maternal blood pressure, fetal reabsorption rates, vascular resistance, oxidative stress, cNK, and TH17 populations in RUPP rats. Based on our findings, NLRP3 inhibition reduces PE pathophysiology and esomeprazole may be a potential therapeutic for PE treatment.


Assuntos
Hipertensão , Pré-Eclâmpsia , Humanos , Gravidez , Ratos , Feminino , Animais , Placenta/metabolismo , Interleucina-33/metabolismo , Interleucina-33/farmacologia , Interleucina-33/uso terapêutico , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Esomeprazol/metabolismo , Esomeprazol/farmacologia , Esomeprazol/uso terapêutico , Ratos Sprague-Dawley , Pressão Sanguínea , Isquemia , Inflamação/metabolismo
10.
Am J Physiol Regul Integr Comp Physiol ; 322(4): R299-R308, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35107024

RESUMO

Prepubertal obesity (PPO) has emerged as a major health problem over the past few decades and is a risk factor for the development of proteinuria. The current study investigated whether the development of renal injury in the obese SSLepR mutant strain occurs before puberty. When determining the temporal changes in serum sex hormones in female and male SS and SSLepR mutant rats between 4 and 10 wk of age, we only observed significant increases in estradiol and testosterone levels in female and male SS rats at 10 wk of age than at 4 wk of age. The results suggest that studying both strains between 4 and 8 wk of age is appropriate to study the effects of PPO on renal injury in this model. Proteinuria was significantly higher in SSLepR mutant rats as opposed to the values observed in SS rats at 8 wk of age, and we did not observe any sex differences in proteinuria in either strain. The kidneys from the SSLepR mutant rats displayed significant glomerular and tubular injury and renal fibrosis versus the values measured in SS rats without any sex differences. Overall, we observed increased immune cell infiltration in the kidneys from SSLepR mutant rats compared with SS rats. Interestingly, female SSLepR mutant rats displayed significant increases in not only M1 macrophages (proinflammatory) but also M2 macrophages (anti-inflammatory) versus male SSLepR mutant rats. These results suggest the SSLepR mutant rat may be a useful model to study early progression of obesity-related renal injury before the onset of puberty.


Assuntos
Nefropatias , Rim , Animais , Feminino , Humanos , Nefropatias/genética , Masculino , Obesidade/complicações , Obesidade/genética , Proteinúria/genética , Puberdade , Ratos
11.
Curr Hypertens Rep ; 24(9): 341-348, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35704142

RESUMO

PURPOSE OF REVIEW: It is well established that controlled immune activation and balance is critical for women's reproductive health and successful pregnancy outcomes. Research in recent decades in both clinical and animal studies has demonstrated that aberrant immune activation and inflammation play a role in the development and progression of women's reproductive health and pregnancy-related disorders. Inflammasomes are multi-protein cytoplasmic complexes that mediate immune activation. In this review, we summarize current knowledge on the role of inflammasome activation in pregnancy-related disorders. RECENT FINDINGS: Increased activation of inflammasome is associated with multiple women's health reproductive disorders and pregnancy-associated disorders, including preeclampsia (PreE). Inflammasome activation is also associated with the novel coronavirus disease 2019 (COVID-19) disease caused by the SARS-Cov-2 virus. We and others have observed a positive association between increased PreE incidences with the onset of the COVID-19 pandemic. Here, we present our recent data indicating increased inflammasome activation, represented by caspase-1 activity, in women with COVID-19 and PreE compared to normotensive pregnant women COVID-19. The role of inflammation in pregnancy-related disorders is an area of intense research interest. With the onset of the COVID-19 pandemic and the associated increase in PreE observed clinically, there is a greater need to identify mechanisms of pathophysiology and targets to treat this maternal disorder. Inflammasome activation is associated with PreE and COVID-19 infection and may hold therapeutic potential to improve outcomes associated with PreE and curb the morbidity attributed to PreE.


Assuntos
COVID-19 , Hipertensão , Pré-Eclâmpsia , Complicações na Gravidez , Animais , Feminino , Humanos , Inflamassomos , Inflamação , Proteína 3 que Contém Domínio de Pirina da Família NLR , Pandemias , Gravidez , SARS-CoV-2
12.
Am J Physiol Regul Integr Comp Physiol ; 320(5): R719-R727, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33533305

RESUMO

Preeclampsia (PE) is characterized by new-onset hypertension in association with elevated natural killer (NK) cells and inflammatory cytokines, which are likely culprits for decreased fetal weight during PE pregnancies. As progesterone increases during normal pregnancy, it stimulates progesterone-induced blocking factor (PIBF). PIBF has been shown to decrease inflammation and cytolytic NK cells, both of which are increased during PE. We hypothesized that PIBF reduces inflammation as a mechanism to improve hypertension in the preclinical reduced uterine perfusion pressure (RUPP) rat model of PE. PIBF (2.0 µg/mL) was administered intraperitoneally on gestational day 15 to either RUPP or normal pregnant (NP) rats. On day 18, carotid catheters were inserted. Mean arterial blood pressure (MAP) and samples were collected on day 19. MAP in NP rats (n = 11) was 100 ± 2 mmHg and 105 ± 3 mmHg in NP + PIBF rats (n = 8) and 122 ± 1 mmHg in RUPP rats (n = 10), which improved to 110 ± 2 mmHg in RUPP + PIBF rats (n = 11), P < 0.05. Pup weight was 2.4 ± 0.1 g in NP, 2.5 ± 0.1 g in NP + PIBF, 1.9 ± 0.1 g in RUPP, and improved to 2.1 ± 0.1 g in RUPP + PIBF rats. Circulating and placental cytolytic NK cells, IL-17, and IL-6 were significantly reduced while IL-4 and T helper (TH) 2 cells were significantly increased in RUPP rats after PIBF administration. Importantly, vasoactive pathways preproendothelin-1, nitric oxide, and soluble fms-Like tyrosine Kinase-1 (sFlt-1) were normalized in RUPP + PIBF rats compared with RUPP rats, P < 0.05. Our findings suggest that PIBF normalized IL-4/TH2 cells, which was associated with improved inflammation, fetal growth restriction, and blood pressure in the RUPP rat model of PE.


Assuntos
Antígenos de Neoplasias/farmacologia , Pressão Sanguínea/fisiologia , Inflamação/tratamento farmacológico , Progesterona/farmacologia , Útero/efeitos dos fármacos , Animais , Citocinas/metabolismo , Feminino , Retardo do Crescimento Fetal/fisiopatologia , Feto/efeitos dos fármacos , Feto/metabolismo , Hipertensão/induzido quimicamente , Hipertensão/fisiopatologia , Inflamação/induzido quimicamente , Inflamação/metabolismo , Isquemia/fisiopatologia , Células Matadoras Naturais/metabolismo , Placenta/metabolismo , Gravidez , Ratos , Artéria Uterina/efeitos dos fármacos , Artéria Uterina/fisiopatologia , Útero/fisiopatologia
13.
Am J Physiol Regul Integr Comp Physiol ; 321(2): R112-R124, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34075808

RESUMO

Preeclampsia (PE) is characterized by maternal hypertension, intrauterine growth restriction, and increased cytolytic natural killer cells (cNKs), which secrete interferon γ (IFNγ). However, the precise role of IFNγ in contributing to PE pathophysiology remains unclear. Using the reduced uterine perfusion pressure (RUPP) rat model of placental ischemia, we tested the hypothesis that neutralization of IFNγ in RUPPs will decrease placental reactive oxygen species (ROS) and improve vascular function resulting in decreased MAP and improved fetal growth. On gestation day (GD) 14, the RUPP procedure was performed and on GDs 15 and 18, a subset of normal pregnant rats (NP) and RUPP rats were injected with 10 µg/kg of an anti-rat IFNγ monoclonal antibody. On GD 18, uterine artery resistance index (UARI) was measured via Doppler ultrasound and on GD 19, mean arterial pressure (MAP) was measured, animals were euthanized, and blood and tissues were collected for analysis. Increased MAP was observed in RUPP rats compared with NP and was reduced in RUPP + anti-IFNγ. Placental ROS was also increased in RUPP rats compared with NP rats and was normalized in RUPP + anti-IFNγ. Fetal and placental weights were reduced in RUPP rats, but were not improved following anti-IFNγ treatment. However, UARI was elevated in RUPP compared with NP rats and was reduced in RUPP + anti-IFNγ. In conclusion, we observed that IFNγ neutralization reduced MAP, UARI, and placental ROS in RUPP recipients. These data suggest that IFNγ is a potential mechanism by which cNKs contribute to PE pathophysiology and may represent a therapeutic target to improve maternal outcomes in PE.


Assuntos
Anticorpos Monoclonais/farmacologia , Pressão Arterial/efeitos dos fármacos , Interferon gama/antagonistas & inibidores , Células Matadoras Naturais/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Placenta/irrigação sanguínea , Placenta/efeitos dos fármacos , Pré-Eclâmpsia/prevenção & controle , Artéria Uterina/efeitos dos fármacos , Resistência Vascular/efeitos dos fármacos , Proteínas Angiogênicas/metabolismo , Animais , Modelos Animais de Doenças , Feminino , Retardo do Crescimento Fetal/metabolismo , Retardo do Crescimento Fetal/fisiopatologia , Retardo do Crescimento Fetal/prevenção & controle , Interferon gama/metabolismo , Isquemia/metabolismo , Isquemia/fisiopatologia , Células Matadoras Naturais/metabolismo , Placenta/metabolismo , Circulação Placentária , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/fisiopatologia , Gravidez , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Artéria Uterina/metabolismo , Artéria Uterina/fisiopatologia
14.
Int J Mol Sci ; 22(19)2021 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-34638670

RESUMO

Platelets, cellular mediators of thrombosis, are activated during sepsis and are increasingly recognized as mediators of the immune response. Platelet activation is significantly increased in sepsis patients compared to ICU control patients. Despite this correlation, the role of activated platelets in contributing to sepsis pathophysiology remains unclear. We previously demonstrated NOD-like receptor protein 3 inflammasome (NLRP3) inflammasome activation in sepsis-induced platelets from cecal-ligation puncture (CLP) rats. Activated platelets were associated with increased pulmonary edema and glomerular injury in CLP vs. SHAM controls. In this study, we investigated whether inhibition of platelet activation would attenuate NLRP3 activation and renal and pulmonary injury in response to CLP. CLP was performed in male and female Sprague Dawley (SD) rats (n = 10/group) to induce abdominal sepsis and SHAM rats served as controls. A subset of CLP animals was treated with Clopidogrel (10 mg/kg/day, CLP + CLOP) to inhibit platelet activation. At 72 h post-CLP, platelet activation and NLRP3 inflammasome assembly were evaluated, IL-1ß and IL-18 were measured in plasma, and tissues, renal and pulmonary pathology, and renal function were assessed. Activated platelets were 7.8 ± 3.6% in Sham, 22 ± 6% in CLP and significantly decreased to 14.5 ± 0.6% in CLP + CLOP (n = 8-10/group, p < 0.05). NLRP3 inflammasome assembly was inhibited in platelets of CLP + CLOP animals vs. CLP. Significant increases in plasma and kidney IL-1ß and IL-18 in response to CLP were decreased with Clopidogrel treatment. Renal injury, but not lung histology or renal function was improved in CLP + CLOP vs. CLP. These data provide evidence that activated platelets may contribute to sepsis-induced renal injury, possibly via NLRP3 activation in platelets. Platelets may be a therapeutic target to decrease renal injury in septic patients.


Assuntos
Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Inflamassomos/efeitos dos fármacos , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Inibidores da Agregação Plaquetária/farmacologia , Sepse/metabolismo , Animais , Feminino , Interleucina-18/metabolismo , Interleucina-1beta/metabolismo , Rim/efeitos dos fármacos , Rim/metabolismo , Ligadura , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Masculino , Proteínas NLR/metabolismo , Ativação Plaquetária/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
15.
Am J Physiol Renal Physiol ; 318(6): F1489-F1499, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32390513

RESUMO

Recently, we reported that obese Dahl salt-sensitive (SS) leptin receptor mutant (SSLepRmutant) rats display progressive renal injury. The present study demonstrated that the early development of renal injury in the SSLepRmutant strain is associated with an increase in the renal infiltration of macrophages compared with lean SS rats. We also examined whether depletion of macrophages with clodronate would reduce the early progression of renal injury in the SSLepRmutant strain. Four-week-old SS and SSLepRmutant rats were treated with either vehicle (PBS) or clodronate (50 mg/kg ip, 2 times/wk) for 4 wk. While the administration of clodronate did not reduce renal macrophage infiltration in SS rats, clodronate decreased macrophages in the kidneys of SSLepRmutant rats by >50%. Interestingly, clodronate significantly reduced plasma glucose, insulin, and triglyceride levels and markedly improved glucose tolerance in SSLepRmutant rats. Treatment with clodronate had no effect on the progression of proteinuria or renal histopathology in SS rats. In the SSLepRmutant strain, proteinuria was markedly reduced during the first 2 wk of treatment (159 ± 32 vs. 303 ± 52 mg/day, respectively). However, after 4 wk of treatment, the effect of clodronate was no longer observed in the SSLepRmutant strain (346 ± 195 vs. 399 ± 50 mg/day, respectively). The kidneys from SSLepRmutant rats displayed glomerular injury with increased mesangial expansion and renal fibrosis versus SS rats. Treatment with clodronate significantly decreased glomerular injury and renal fibrosis in the SSLepRmutant strain. Overall, these data indicate that the depletion of macrophages improves metabolic disease and slows the early progression of renal injury in SSLepRmutant rats.


Assuntos
Ácido Clodrônico/farmacologia , Nefropatias/prevenção & controle , Rim/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Obesidade/tratamento farmacológico , Receptores para Leptina/genética , Animais , Glicemia/efeitos dos fármacos , Glicemia/metabolismo , Proliferação de Células , Modelos Animais de Doenças , Progressão da Doença , Feminino , Fibrose , Insulina/sangue , Rim/metabolismo , Rim/patologia , Nefropatias/sangue , Nefropatias/etiologia , Nefropatias/patologia , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Mutação , Obesidade/sangue , Obesidade/complicações , Obesidade/genética , Ratos Endogâmicos Dahl , Fatores Sexuais , Fatores de Tempo , Triglicerídeos/sangue
16.
Am J Physiol Renal Physiol ; 318(4): F911-F921, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32068459

RESUMO

The present study examined whether development of renal injury in the nondiabetic obese Dahl salt-sensitive leptin receptor mutant (SSLepRmutant) strain is associated with elevations in glomerular filtration rate and renal lipid accumulation. Baseline mean arterial pressure at 6 wk of age was similar between Dahl salt-sensitive wild-type (SSWT) and SSLepRmutant rats. However, by 18 wk of age, the SSLepRmutant strain developed hypertension, while the elevation in mean arterial pressure was not as severe in SSWT rats (192 ± 4 and 149 ± 6 mmHg, respectively). At baseline, proteinuria was fourfold higher in SSLepRmutant than SSWT rats and remained elevated throughout the study. The early development of progressive proteinuria was associated with renal hyperfiltration followed by a decline in renal function over the course of study in the SSLepRmutant compared with SSWT rats. Kidneys from the SSLepRmutant strain displayed more glomerulosclerosis and glomerular lipid accumulation than SSWT rats. Glomeruli were isolated from the renal cortex of both strains at 6 and 18 wk of age, and RNA sequencing was performed to identify genes and pathways driving glomerular injury. We observed significant increases in expression of the influx lipid transporters, chemokine (C-X-C motif) ligand 16 (Cxcl16) and scavenger receptor and fatty acid translocase (Cd36), respectively, and a significant decrease in expression of the efflux lipid transporter, ATP-binding cassette subfamily A member 2 (Abca2; cholesterol efflux regulatory protein 2), in SSLepRmutant compared with SSWT rats at 6 and 18 wk of age, which were validated by RT-PCR analysis. These data suggest an association between glomerular hyperfiltration and glomerular lipid accumulation during the early development of proteinuria associated with obesity.


Assuntos
Tecido Adiposo/metabolismo , Hemodinâmica , Hipertensão/metabolismo , Nefropatias/metabolismo , Glomérulos Renais/metabolismo , Metabolismo dos Lipídeos , Mutação , Obesidade/metabolismo , Receptores para Leptina/genética , Circulação Renal , Transportador 1 de Cassete de Ligação de ATP/genética , Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Tecido Adiposo/patologia , Tecido Adiposo/fisiopatologia , Adiposidade , Animais , Antígenos CD36/genética , Antígenos CD36/metabolismo , Quimiocina CXCL16/genética , Quimiocina CXCL16/metabolismo , Modelos Animais de Doenças , Predisposição Genética para Doença , Taxa de Filtração Glomerular , Hipertensão/genética , Hipertensão/patologia , Hipertensão/fisiopatologia , Nefropatias/genética , Nefropatias/patologia , Nefropatias/fisiopatologia , Glomérulos Renais/patologia , Glomérulos Renais/fisiopatologia , Metabolismo dos Lipídeos/genética , Obesidade/genética , Obesidade/patologia , Obesidade/fisiopatologia , Fenótipo , Proteinúria/metabolismo , Proteinúria/patologia , Proteinúria/fisiopatologia , Ratos Endogâmicos Dahl , Cloreto de Sódio na Dieta
17.
Am J Physiol Regul Integr Comp Physiol ; 318(6): R1036-R1046, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32320265

RESUMO

T-helper (TH)17s, IL-17, and cytolytic natural killer cells (cNKs) are increased in preeclampsia and contribute to the hypertension, inflammation, and fetal growth restriction that occurs in response to placental ischemia in the reduced uterine perfusion pressure (RUPP) rat model of preeclampsia. As IL-17 stimulates NK cytotoxicity in vitro, we tested the hypothesis that IL-17 inhibition in RUPP rats would decrease cNK activation as a mechanism to improve maternal and fetal outcomes. On gestation day (GD) 14, rats undergoing RUPP received a miniosmotic pump infusing IL-17RC (100 pg/day), a soluble IL-17 receptor (RUPP + IL-17RC). On GD19, mean arterial pressure (MAP) was measured in normal pregnant (NP), RUPP, and RUPP + IL-17RC rats (n = 10-12/group), animals were euthanized, and blood and tissues were collected for analysis. MAP was 30% higher in RUPP compared with NP (P < 0.0001) and was 12% lower in RUPP + IL-17RC (P = 0.0007 vs. RUPP). Placental cytolytic NK cells were 132% higher in RUPP than in NP (P = 0.04 vs. NP) and were normalized in RUPP + IL-17RC (P = 0.03 vs. RUPP). Placental levels of TNF-α, a cNK-secreted cytokine, and macrophage inflammatory protein-3α (MIP-3α), a cNK chemokine, were higher in RUPP vs. NP and lower after IL-17 blockade. Placental VEGF was lower in RUPP vs. NP and was normalized in RUPP + IL-17RC. In vitro cytolytic activity of RUPP placental NKs was higher compared with NP and was blunted in RUPP + IL-17RC NKs. Finally, both fetal weight and placental weight were lower in RUPP compared with NP, and were improved in RUPP + IL-17RC. These data identify IL-17 as a mediator of cNK activation in response to placental ischemia during pregnancy.


Assuntos
Interleucina-17/metabolismo , Isquemia/imunologia , Células Matadoras Naturais/efeitos dos fármacos , Placenta/irrigação sanguínea , Receptores de Interleucina-17/administração & dosagem , Animais , Pressão Arterial/efeitos dos fármacos , Citocinas/metabolismo , Feminino , Mediadores da Inflamação/metabolismo , Isquemia/metabolismo , Placenta/metabolismo , Gravidez , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Células Th17/efeitos dos fármacos , Células Th17/metabolismo
18.
Am J Physiol Regul Integr Comp Physiol ; 318(2): R256-R262, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31721604

RESUMO

Preeclampsia (PE) is characterized by new-onset hypertension that usually occurs in the third trimester of pregnancy and is associated with oxidative stress and angiotensin II type 1 receptor agonistic autoantibodies (AT1-AAs). Inhibition of the AT1-AAs in the reduced uterine perfusion pressure (RUPP) rat, a model of PE, attenuates hypertension and many other characteristics of PE. We have previously shown that mitochondrial oxidative stress (mtROS) is a newly described PE characteristic exhibited by the RUPP rat that contributes to hypertension. However, the factors that cause mtROS in PE or RUPP are unknown. Thus, the objective of the current study is to use pharmacologic inhibition of AT1-AAs to examine their role in mtROS in the RUPP rat model of PE. AT1-AA inhibition in RUPP rats was achieved by administration of an epitope-binding peptide ('n7AAc'). Female Sprague-Dawley rats were divided into the following two groups: RUPP and RUPP + AT1-AA inhibition (RUPP + 'n7AAc'). On day 14 of gestation (GD), RUPP surgery was performed; 'n7AAc' peptide (2 µg/µL) was administered by miniosmotic pumps in a subset of RUPP rats; and on GD19, sera, placentas, and kidneys were collected. mitochondrial respiration and mtROS were measured in isolated mitochondria using the Oxygraph 2K and fluorescent microplate reader, respectively. Placental and renal mitochondrial respiration and mtROS were improved in RUPP + 'n7AAc' rats compared with RUPP controls. Moreover, endothelial cells (human umbilical vein endothelial cells) treated with RUPP + 'n7AAc' sera exhibited less mtROS compared with those treated with RUPP sera. Overall, our findings suggest that AT1-AA signaling is one stimulus of mtROS during PE.


Assuntos
Anti-Hipertensivos/farmacologia , Autoanticorpos/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Rim/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Peptídeos/farmacologia , Pré-Eclâmpsia/tratamento farmacológico , Espécies Reativas de Oxigênio/metabolismo , Receptor Tipo 1 de Angiotensina/imunologia , Animais , Células Cultivadas , Modelos Animais de Doenças , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Rim/imunologia , Rim/metabolismo , Rim/fisiopatologia , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Pré-Eclâmpsia/imunologia , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/fisiopatologia , Gravidez , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/metabolismo , Transdução de Sinais
19.
Am J Physiol Renal Physiol ; 316(2): F316-F327, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30539649

RESUMO

Diabetes and hypertension are the major causes of chronic kidney disease (CKD). Epidemiological studies within the last few decades have revealed that obesity-associated renal disease is an emerging epidemic and that the increasing prevalence of obesity parallels the increased rate of CKD. This has led to the inclusion of obesity as an independent risk factor for CKD. A major complication when studying the relationship between obesity and renal injury is that cardiovascular and metabolic disorders that may result from obesity including hyperglycemia, hypertension, and dyslipidemia, or the cluster of these disorders [defined as the metabolic syndrome, (MetS)] also contribute to the development and progression of renal disease. The associations between hyperglycemia and hypertension with renal disease have been reported extensively in patients suffering from obesity. Currently, there are several obese rodent models (high-fat diet-induced obesity and leptin signaling dysfunction) that exhibit characteristics of MetS. However, the available obese rodent models currently have not been used to investigate the impact of obesity alone on the development of renal injury before hypertension and/or hyperglycemia. Therefore, the aim of this review is to describe the incidence and severity of renal disease in these rodent models of obesity and determine which models are suitable to study the independent effects obesity on the development and progression of renal disease.


Assuntos
Nefropatias/etiologia , Síndrome Metabólica/etiologia , Obesidade/complicações , Animais , Dieta Hiperlipídica , Modelos Animais de Doenças , Progressão da Doença , Predisposição Genética para Doença , Humanos , Hiperglicemia/etiologia , Hipertensão/etiologia , Nefropatias/metabolismo , Nefropatias/patologia , Síndrome Metabólica/metabolismo , Síndrome Metabólica/fisiopatologia , Obesidade/genética , Obesidade/metabolismo , Obesidade/fisiopatologia , Ratos , Fatores de Risco , Índice de Gravidade de Doença
20.
Am J Physiol Regul Integr Comp Physiol ; 316(5): R441-R447, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30811248

RESUMO

Preeclampsia (PE) is characterized by new-onset hypertension during pregnancy and is associated with immune activation and placental oxidative stress. Mitochondrial dysfunction is a major source of oxidative stress and may play a role in the pathology of PE. We (Vaka VR, et al. Hypertension 72: 703-711, 2018. doi: 10.1161/HYPERTENSIONAHA.118.11290 .) have previously shown that placental ischemia is associated with mitochondrial oxidative stress in the reduced uterine perfusion pressure (RUPP) model of PE. Furthermore, we have also shown that placental ischemia induces natural killer (NK) cell activation in RUPP. Thus, we hypothesize that NK cell depletion could improve mitochondrial function associated with hypertension in the RUPP rat model of PE. Pregnant Sprague-Dawley rats were divided into three groups: normal pregnant (NP), RUPP, and RUPP+NK cell depletion rats (RUPP+NKD). On gestational day (GD)14, RUPP surgery was performed, and NK cells were depleted by administering anti-asialo GM1 antibodies (3.5 µg/100 µl ip) on GD15 and GD17. On GD19, mean arterial pressure (MAP) was measured, and placental mitochondria were isolated and used for mitochondrial assays. MAP was elevated in RUPP versus NP rats (119 ± 1 vs.104 ± 2 mmHg, P = 0.0004) and was normalized in RUPP+NKD rats (107 ± 2 mmHg, P = 0.002). Reduced complex IV activity and state 3 respiration rate were improved in RUPP+NKD rats. Human umbilical vein endothelial cells treated with RUPP+NKD serum restored respiration with reduced mitochondrial reactive oxygen species (ROS). The restored placental or endothelial mitochondrial function along with attenuated endothelial cell mitochondrial ROS with NK cell depletion indicate an important role of NK cells in mediating mitochondrial oxidative stress in the pathology of PE.


Assuntos
Metabolismo Energético , Isquemia/metabolismo , Células Matadoras Naturais/metabolismo , Mitocôndrias/metabolismo , Estresse Oxidativo , Placenta/irrigação sanguínea , Pré-Eclâmpsia/metabolismo , Útero/irrigação sanguínea , Animais , Pressão Arterial , Respiração Celular , Células Cultivadas , Modelos Animais de Doenças , Feminino , Idade Gestacional , Células Endoteliais da Veia Umbilical Humana/imunologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Isquemia/imunologia , Isquemia/fisiopatologia , Células Matadoras Naturais/imunologia , Pré-Eclâmpsia/imunologia , Pré-Eclâmpsia/fisiopatologia , Gravidez , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo , Fluxo Sanguíneo Regional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA