Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
PLoS Genet ; 15(10): e1008464, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31634348

RESUMO

SF3B1 is the most frequently mutated splicing factor in cancer. Mutations in SF3B1 likely confer clonal advantages to cancer cells but they may also confer vulnerabilities that can be therapeutically targeted. SF3B1 cancer mutations can be maintained in homozygosis in C. elegans, allowing synthetic lethal screens with a homogeneous population of animals. These mutations cause alternative splicing (AS) defects in C. elegans, as it occurs in SF3B1-mutated human cells. In a screen, we identified RNAi of U2 snRNP components that cause synthetic lethality with sftb-1/SF3B1 mutations. We also detected synthetic interactions between sftb-1 mutants and cancer-related mutations in uaf-2/U2AF1 or rsp-4/SRSF2, demonstrating that this model can identify interactions between mutations that are mutually exclusive in human tumors. Finally, we have edited an SFTB-1 domain to sensitize C. elegans to the splicing modulators pladienolide B and herboxidiene. Thus, we have established a multicellular model for SF3B1 mutations amenable for high-throughput genetic and chemical screens.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Neoplasias/genética , Fatores de Processamento de RNA/genética , Ribonucleoproteína Nuclear Pequena U2/genética , Processamento Alternativo/efeitos dos fármacos , Processamento Alternativo/genética , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Sistemas CRISPR-Cas , Modelos Animais de Doenças , Ensaios de Triagem em Larga Escala/métodos , Homozigoto , Humanos , Mutação de Sentido Incorreto , Neoplasias/tratamento farmacológico , Domínios Proteicos/genética , Interferência de RNA , Spliceossomos/efeitos dos fármacos , Mutações Sintéticas Letais
2.
RNA ; 21(12): 2119-31, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26490224

RESUMO

Retinitis pigmentosa (RP) is a rare genetic disease that causes gradual blindness through retinal degeneration. Intriguingly, seven of the 24 genes identified as responsible for the autosomal-dominant form (adRP) are ubiquitous spliceosome components whose impairment causes disease only in the retina. The fact that these proteins are essential in all organisms hampers genetic, genomic, and physiological studies, but we addressed these difficulties by using RNAi in Caenorhabditis elegans. Our study of worm phenotypes produced by RNAi of splicing-related adRP (s-adRP) genes functionally distinguishes between components of U4 and U5 snRNP complexes, because knockdown of U5 proteins produces a stronger phenotype. RNA-seq analyses of worms where s-adRP genes were partially inactivated by RNAi, revealed mild intron retention in developing animals but not in adults, suggesting a positive correlation between intron retention and transcriptional activity. Interestingly, RNAi of s-adRP genes produces an increase in the expression of atl-1 (homolog of human ATR), which is normally activated in response to replicative stress and certain DNA-damaging agents. The up-regulation of atl-1 correlates with the ectopic expression of the pro-apoptotic gene egl-1 and apoptosis in hypodermal cells, which produce the cuticle, but not in other cell types. Our model in C. elegans resembles s-adRP in two aspects: The phenotype caused by global knockdown of s-adRP genes is cell type-specific and associated with high transcriptional activity. Finally, along with a reduced production of mature transcripts, we propose a model in which the retina-specific cell death in s-adRP patients can be induced through genomic instability.


Assuntos
Apoptose , Retinose Pigmentar/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Genes Dominantes , Especificidade de Órgãos , Interferência de RNA , Splicing de RNA , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Retinose Pigmentar/patologia , Ribonucleoproteína Nuclear Pequena U4-U6/genética , Ribonucleoproteína Nuclear Pequena U5/genética
3.
RNA ; 21(9): 1544-53, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26150554

RESUMO

Genes coding for members of the Sm-like (LSm) protein family are conserved through evolution from prokaryotes to humans. These proteins have been described as forming homo- or heterocomplexes implicated in a broad range of RNA-related functions. To date, the nuclear LSm2-8 and the cytoplasmic LSm1-7 heteroheptamers are the best characterized complexes in eukaryotes. Through a comprehensive functional study of the LSm family members, we found that lsm-1 and lsm-3 are not essential for C. elegans viability, but their perturbation, by RNAi or mutations, produces defects in development, reproduction, and motility. We further investigated the function of lsm-1, which encodes the distinctive protein of the cytoplasmic complex. RNA-seq analysis of lsm-1 mutants suggests that they have impaired Insulin/IGF-1 signaling (IIS), which is conserved in metazoans and involved in the response to various types of stress through the action of the FOXO transcription factor DAF-16. Further analysis using a DAF-16::GFP reporter indicated that heat stress-induced translocation of DAF-16 to the nuclei is dependent on lsm-1. Consistent with this, we observed that lsm-1 mutants display heightened sensitivity to thermal stress and starvation, while overexpression of lsm-1 has the opposite effect. We also observed that under stress, cytoplasmic LSm proteins aggregate into granules in an LSM-1-dependent manner. Moreover, we found that lsm-1 and lsm-3 are required for other processes regulated by the IIS pathway, such as aging and pathogen resistance.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/fisiologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Citoplasma/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Animais , Sequência de Bases , Caenorhabditis elegans/genética , Sequência Conservada , Fatores de Transcrição Forkhead/metabolismo , Genes Essenciais , Temperatura Alta , Humanos , Insulina/metabolismo , Fator de Crescimento Insulin-Like I/metabolismo , Mutação , Transdução de Sinais , Estresse Fisiológico
4.
Methods ; 68(3): 403-8, 2014 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-24821108

RESUMO

Antibiotic selection markers have been recently developed in the multicellular model organism Caenorhabditis elegans and other related nematode species, opening great opportunities in the field of nematode transgenesis. Here we describe how these antibiotic selection systems can be easily combined with many well-established genetic approaches to study gene function, improving time- and cost-effectiveness of the nematode genetic toolbox.


Assuntos
Caenorhabditis elegans/genética , Técnicas de Transferência de Genes , Seleção Genética , Transformação Genética , Animais , Antibacterianos/farmacologia , Biomarcadores , Caenorhabditis elegans/efeitos dos fármacos , Mutação
5.
Dev Cell ; 57(2): 180-196.e7, 2022 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-34921763

RESUMO

Eukaryotic genomes harbor invading transposable elements that are silenced by PIWI-interacting RNAs (piRNAs) to maintain genome integrity in animal germ cells. However, whether piRNAs also regulate endogenous gene expression programs remains unclear. Here, we show that C. elegans piRNAs trigger the transcriptional silencing of hundreds of spermatogenic genes during spermatogenesis, promoting sperm differentiation and function. This silencing signal requires piRNA-dependent small RNA biogenesis and loading into downstream nuclear effectors, which correlates with the dynamic reorganization of two distinct perinuclear biomolecular condensates present in germ cells. In addition, the silencing capacity of piRNAs is temporally counteracted by the Argonaute CSR-1, which targets and licenses spermatogenic gene transcription. The spatial and temporal overlap between these opposing small RNA pathways contributes to setting up the timing of the spermatogenic differentiation program. Thus, our work identifies a prominent role for piRNAs as direct regulators of endogenous transcriptional programs during germline development and gamete differentiation.


Assuntos
Regulação da Expressão Gênica no Desenvolvimento/genética , RNA Interferente Pequeno/genética , Espermatogênese/genética , Animais , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Diferenciação Celular/genética , Elementos de DNA Transponíveis/genética , Inativação Gênica/fisiologia , Células Germinativas/metabolismo , Masculino , Sistema Fosfotransferase de Açúcar do Fosfoenolpiruvato/genética , Interferência de RNA/fisiologia , RNA Mensageiro/genética , RNA Interferente Pequeno/metabolismo , Espermatogênese/fisiologia , Transcrição Gênica/genética
6.
Nat Commun ; 12(1): 1441, 2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33664268

RESUMO

Inheritance and clearance of maternal mRNAs are two of the most critical events required for animal early embryonic development. However, the mechanisms regulating this process are still largely unknown. Here, we show that together with maternal mRNAs, C. elegans embryos inherit a complementary pool of small non-coding RNAs that facilitate the cleavage and removal of hundreds of maternal mRNAs. These antisense small RNAs are loaded into the maternal catalytically-active Argonaute CSR-1 and cleave complementary mRNAs no longer engaged in translation in somatic blastomeres. Induced depletion of CSR-1 specifically during embryonic development leads to embryonic lethality in a slicer-dependent manner and impairs the degradation of CSR-1 embryonic mRNA targets. Given the conservation of Argonaute catalytic activity, we propose that a similar mechanism operates to clear maternal mRNAs during the maternal-to-zygotic transition across species.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/embriologia , Desenvolvimento Embrionário/fisiologia , RNA Mensageiro Estocado/genética , Pequeno RNA não Traduzido/genética , Animais , Blastômeros/citologia , Caenorhabditis elegans/genética , Embrião não Mamífero/citologia , Regulação da Expressão Gênica no Desenvolvimento/genética
7.
Nat Commun ; 12(1): 3492, 2021 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-34108460

RESUMO

In the Caenorhabditis elegans germline, thousands of mRNAs are concomitantly expressed with antisense 22G-RNAs, which are loaded into the Argonaute CSR-1. Despite their essential functions for animal fertility and embryonic development, how CSR-1 22G-RNAs are produced remains unknown. Here, we show that CSR-1 slicer activity is primarily involved in triggering the synthesis of small RNAs on the coding sequences of germline mRNAs and post-transcriptionally regulates a fraction of targets. CSR-1-cleaved mRNAs prime the RNA-dependent RNA polymerase, EGO-1, to synthesize 22G-RNAs in phase with translating ribosomes, in contrast to other 22G-RNAs mostly synthesized in germ granules. Moreover, codon optimality and efficient translation antagonize CSR-1 slicing and 22G-RNAs biogenesis. We propose that codon usage differences encoded into mRNA sequences might be a conserved strategy in eukaryotes to regulate small RNA biogenesis and Argonaute targeting.


Assuntos
Proteínas Argonautas/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Uso do Códon , Biossíntese de Proteínas , RNA Interferente Pequeno/biossíntese , Animais , Proteínas Argonautas/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Catálise , Citosol/metabolismo , Mutação , Oogônios/metabolismo , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , RNA Polimerase Dependente de RNA/metabolismo , Ribossomos/metabolismo
8.
Nat Cell Biol ; 22(2): 235-245, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32015436

RESUMO

PIWI-interacting RNAs (piRNAs) promote fertility in many animals. However, whether this is due to their conserved role in repressing repetitive elements (REs) remains unclear. Here, we show that the progressive loss of fertility in Caenorhabditis elegans lacking piRNAs is not caused by derepression of REs or other piRNA targets but, rather, is mediated by epigenetic silencing of all of the replicative histone genes. In the absence of piRNAs, downstream components of the piRNA pathway relocalize from germ granules and piRNA targets to histone mRNAs to synthesize antisense small RNAs (sRNAs) and induce transgenerational silencing. Removal of the downstream components of the piRNA pathway restores histone mRNA expression and fertility in piRNA mutants, and the inheritance of histone sRNAs in wild-type worms adversely affects their fertility for multiple generations. We conclude that sRNA-mediated silencing of histone genes impairs the fertility of piRNA mutants and may serve to maintain piRNAs across evolution.


Assuntos
Proteínas Argonautas/genética , Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Inativação Gênica , Histonas/genética , RNA Interferente Pequeno/genética , Animais , Animais Geneticamente Modificados , Proteínas Argonautas/deficiência , Proteínas Argonautas/metabolismo , Evolução Biológica , Sistemas CRISPR-Cas , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Fertilidade/genética , Edição de Genes , Histonas/metabolismo , Padrões de Herança , Mutação , RNA Antissenso/genética , RNA Antissenso/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/metabolismo , Sequências Repetitivas de Ácido Nucleico
9.
Sci Rep ; 10(1): 16153, 2020 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-32999373

RESUMO

Mammalian IκB proteins (IκBs) exert their main function as negative regulators of NF-κB, a central signaling pathway controlling immunity and inflammation. An alternative chromatin role for IκBs has been shown to affect stemness and cell differentiation. However, the involvement of NF-κB in this function has not been excluded. NFKI-1 and IKB-1 are IκB homologs in Caenorhabditis elegans, which lacks NF-κB nuclear effectors. We found that nfki-1 and ikb-1 mutants display developmental defects that phenocopy mutations in Polycomb and UTX-1 histone demethylase, suggesting a role for C. elegans IκBs in chromatin regulation. Further supporting this possibility (1) we detected NFKI-1 in the nucleus of cells; (2) NFKI-1 and IKB-1 bind to histones and Polycomb proteins, (3) and associate with chromatin in vivo, and (4) mutations in nfki-1 and ikb-1 alter chromatin marks. Based on these results, we propose that ancestral IκB inhibitors modulate Polycomb activity at specific gene subsets with an impact on development.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Cromatina/metabolismo , Proteínas I-kappa B/metabolismo , Proteínas do Grupo Polycomb/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Diferenciação Celular/fisiologia , Proteínas I-kappa B/genética , Proteínas do Grupo Polycomb/genética
10.
Oncotarget ; 9(11): 9556-9571, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29515753

RESUMO

The transcriptomes of model organisms have been defined under specific laboratory growth conditions. The standard protocol for Caenorhabditis elegans growth and maintenance is 20°C on an Escherichia coli diet. Temperatures ranging from 15°C to 25°C or feeding with other species of bacteria are considered physiological conditions, but the effect of these conditions on the worm transcriptome has not been well characterized. Here, we compare the global gene expression profile for the reference Caenorhabditis elegans strain (N2) grown at 15°C, 20°C, and 25°C on two different diets, Escherichia coli and Bacillus subtilis. When C. elegans were fed E. coli and the growth temperature was increased, we observed an enhancement of defense response pathways and down-regulation of genes associated with metabolic functions. However, when C. elegans were fed B. subtilis and the growth temperature was increased, the nematodes exhibited a decrease in defense response pathways and an enhancement of expression of genes associated with metabolic functions. Our results show that C. elegans undergo significant metabolic and defense response changes when the maintenance temperature fluctuates within the physiological range and that the degree of pathogenicity of the bacterial diet can further alter the worm transcriptome.

11.
Genetics ; 202(3): 961-75, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26739451

RESUMO

SWI/SNF ATP-dependent chromatin-remodeling complexes have been related to several cellular processes such as transcription, regulation of chromosomal stability, and DNA repair. The Caenorhabditis elegans gene ham-3 (also known as swsn-2.1) and its paralog swsn-2.2 encode accessory subunits of SWI/SNF complexes. Using RNA interference (RNAi) assays and diverse alleles we investigated whether ham-3 and swsn-2.2 have different functions during C. elegans development since they encode proteins that are probably mutually exclusive in a given SWI/SNF complex. We found that ham-3 and swsn-2.2 display similar functions in vulva specification, germline development, and intestinal cell proliferation, but have distinct roles in embryonic development. Accordingly, we detected functional redundancy in some developmental processes and demonstrated by RNA sequencing of RNAi-treated L4 animals that ham-3 and swsn-2.2 regulate the expression of a common subset of genes but also have specific targets. Cell lineage analyses in the embryo revealed hyper-proliferation of intestinal cells in ham-3 null mutants whereas swsn-2.2 is required for proper cell divisions. Using a proteomic approach, we identified SWSN-2.2-interacting proteins needed for early cell divisions, such as SAO-1 and ATX-2, and also nuclear envelope proteins such as MEL-28. swsn-2.2 mutants phenocopy mel-28 loss-of-function, and we observed that SWSN-2.2 and MEL-28 colocalize in mitotic and meiotic chromosomes. Moreover, we demonstrated that SWSN-2.2 is required for correct chromosome segregation and nuclear reassembly after mitosis including recruitment of MEL-28 to the nuclear periphery.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Linhagem da Célula/genética , Montagem e Desmontagem da Cromatina , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Alelos , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Núcleo Celular/genética , Segregação de Cromossomos , Proteínas de Ligação a DNA , Desenvolvimento Embrionário/genética , Mitose , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Proteômica , Interferência de RNA , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA