Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Osteoarthritis Cartilage ; 32(6): 730-739, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38442767

RESUMO

OBJECTIVE: To develop and validate a neural network to estimate hip contact forces (HCF), and lower body kinematics and kinetics during walking in individuals with hip osteoarthritis (OA) using synthesised anatomical key points and electromyography. To assess the capability of the neural network to detect directional changes in HCF resulting from prescribed gait modifications. DESIGN: A calibrated electromyography-informed neuromusculoskeletal model was used to compute lower body joint angles, moments, and HCF for 17 participants with mild-to-moderate hip OA. Anatomical key points (e.g., joint centres) were synthesised from marker trajectories and augmented with bias and noise expected from computer vision-based pose estimation systems. Temporal convolutional and long short-term memory neural networks (NN) were trained using leave-one-subject-out validation to predict neuromusculoskeletal modelling outputs from the synthesised key points and measured electromyography data from 5 hip-spanning muscles. RESULTS: HCF was predicted with an average error of 13.4 ± 7.1% of peak force. Joint angles and moments were predicted with an average root-mean-square-error of 5.3 degrees and 0.10 Nm/kg, respectively. The NN could detect changes in peak HCF that occur due to gait modifications with good agreement with neuromusculoskeletal modelling (r2 = 0.72) and a minimum detectable change of 9.5%. CONCLUSION: The developed neural network predicted HCF and lower body joint angles and moments in individuals with hip OA using noisy synthesised key point locations with acceptable errors. Changes in HCF magnitude due to gait modifications were predicted with high accuracy. These findings have important implications for implementation of load-modification based gait retraining interventions for people with hip OA in a natural environment (i.e., home, clinic).


Assuntos
Eletromiografia , Marcha , Articulação do Quadril , Redes Neurais de Computação , Osteoartrite do Quadril , Humanos , Osteoartrite do Quadril/fisiopatologia , Eletromiografia/métodos , Feminino , Masculino , Fenômenos Biomecânicos , Pessoa de Meia-Idade , Articulação do Quadril/fisiopatologia , Idoso , Marcha/fisiologia , Caminhada/fisiologia , Músculo Esquelético/fisiopatologia , Suporte de Carga/fisiologia
2.
PLoS One ; 19(2): e0297899, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38359050

RESUMO

Knee function is rarely measured objectively during functional tasks following total knee arthroplasty. Inertial measurement units (IMU) can measure knee kinematics and range of motion (ROM) during dynamic activities and offer an easy-to-use system for knee function assessment post total knee arthroplasty. However, IMU must be validated against gold standard three-dimensional optical motion capture systems (OMC) across a range of tasks if they are to see widespread uptake. We computed knee rotations and ROM from commercial IMU sensor measurements during walking, squatting, sit-to-stand, stair ascent, and stair descent in 21 patients one-year post total knee arthroplasty using two methods: direct computation using segment orientations (r_IMU), and an IMU-driven iCloud-based interactive lower limb model (m_IMU). This cross-sectional study compared computed knee angles and ROM to a gold-standard OMC and inverse kinematics method using Pearson's correlation coefficient (R) and root-mean-square-differences (RMSD). The r_IMU and m_IMU methods estimated sagittal plane knee angles with excellent correlation (>0.95) compared to OMC for walking, squatting, sit-to-stand, and stair-ascent, and very good correlation (>0.90) for stair descent. For squatting, sit-to-stand, and walking, the mean RMSD for r_IMU and m_IMU compared to OMC were <4 degrees, < 5 degrees, and <6 degrees, respectively but higher for stair ascent and descent (~12 degrees). Frontal and transverse plane knee kinematics estimated using r_IMU and m_IMU showed poor to moderate correlation compared to OMC. There were no differences in ROM measurements during squatting, sit-to-stand, and walking across the two methods. Thus, IMUs can measure sagittal plane knee angles and ROM with high accuracy for a variety of tasks and may be a useful in-clinic tool for objective assessment of knee function following total knee arthroplasty.


Assuntos
Artroplastia do Joelho , Humanos , Fenômenos Biomecânicos , Atividades Cotidianas , Estudos Transversais , Articulação do Joelho/cirurgia , Caminhada , Amplitude de Movimento Articular , Extremidade Inferior/cirurgia , Marcha
3.
Artigo em Inglês | MEDLINE | ID: mdl-38787676

RESUMO

Remodeling of the Achilles tendon (AT) is partly driven by its mechanical environment. AT force can be estimated with neuromusculoskeletal (NMSK) modeling; however, the complex experimental setup required to perform the analyses confines use to the laboratory. We developed task-specific long short-term memory (LSTM) neural networks that employ markerless video data to predict the AT force during walking, running, countermovement jump, single-leg landing, and single-leg heel rise. The task-specific LSTM models were trained on pose estimation keypoints and corresponding AT force data from 16 subjects, calculated via an established NMSK modeling pipeline, and cross-validated using a leave-one-subject-out approach. As proof-of-concept, new motion data of one participant was collected with two smartphones and used to predict AT forces. The task-specific LSTM models predicted the time-series AT force using synthesized pose estimation data with root mean square error (RMSE) ≤ 526 N, normalized RMSE (nRMSE) ≤ 0.21 , R 2 ≥ 0.81 . Walking task resulted the most accurate with RMSE = 189±62 N; nRMSE = 0.11±0.03 , R 2 = 0.92±0.04 . AT force predicted with smartphones video data was physiologically plausible, agreeing in timing and magnitude with established force profiles. This study demonstrated the feasibility of using low-cost solutions to deploy complex biomechanical analyses outside the laboratory.


Assuntos
Tendão do Calcâneo , Redes Neurais de Computação , Corrida , Gravação em Vídeo , Caminhada , Tendão do Calcâneo/fisiologia , Humanos , Caminhada/fisiologia , Fenômenos Biomecânicos , Masculino , Corrida/fisiologia , Adulto , Feminino , Adulto Jovem , Algoritmos , Smartphone , Estudo de Prova de Conceito , Voluntários Saudáveis
4.
Artigo em Inglês | MEDLINE | ID: mdl-37459270

RESUMO

The Achilles tendon (AT) is sensitive to mechanical loading, with appropriate strain improving tissue mechanical and material properties. Estimating free AT strain is currently possible through personalized neuromusculoskeletal (NMSK) modeling; however, this approach is time-consuming and requires extensive laboratory data. To enable in-field assessments, we developed an artificial intelligence (AI) workflow to predict free AT strain during running from motion capture data. Ten keypoints commonly used in pose estimation algorithms (e.g., OpenPose) were synthesized from motion capture data and noise was added to represent real-world data obtained using video cameras. Two AI workflows were compared: (1) a Long Short-Term Memory (LSTM) neural network that predicted free AT strain directly (called LSTM only workflow); and (2) an LSTM neural network that predicted AT force which was subsequently converted to free AT strain using a personalized force-strain curve (called LSTM+ workflow). AI models were trained and evaluated using estimates of free AT strain obtained from a validated NMSK model with personalized AT force-strain curve. The effect of using different input features (position, velocity, and acceleration of keypoints, height and mass) on free AT strain predictions was also assessed. The LSTM+ workflow significantly improved the predictions of free AT strain compared to the LSTM only workflow (p < 0.001). The best free AT strain predictions were obtained using positions and velocities of keypoints as well as the height and mass of the participants as input, with average time-series root mean square error (RMSE) of 1.72±0.95% strain and r2 of 0.92±0.10, and peak strain RMSE of 2.20% and r2 of 0.54. In conclusion, we showed feasibility of predicting accurate free AT strain during running using low fidelity pose estimation data.


Assuntos
Tendão do Calcâneo , Inteligência Artificial , Humanos , Captura de Movimento , Redes Neurais de Computação , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA