Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Bases de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cell Reprogram ; 26(1): 33-36, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38261417

RESUMO

A 6-year-old mare, a valuable polo horse, died of complications following postcolic surgery. To preserve its genetics, ear skin samples were collected immediately after death and stored in an equine embryo transfer medium at 4°C for 5 days. After trypsin digestion, monolayer fibroblast cultures were established, but signs of massive bacterial infection were found in all of them. As an ultimate attempt for rescue, rigorously and repeatedly washed cells were individually cultured in all wells of four 96-well dishes. New monolayers were established from the few wells without contamination and used for somatic cell nuclear transfer. Four of the six Day 7 blastocysts derived from 14 reconstructed zygotes were transferred in four naturally cycling mares on Day 5 after ovulation. The embryo transfers resulted in 2 pregnancies, one from a fresh and one from a vitrified blastocyst. The vitrified embryo transfer resulted in a healthy offspring, now 21 months old, genetically and phenotypically identical to the somatic cell donor animal.


Assuntos
Descontaminação , Transferência Embrionária , Gravidez , Animais , Cavalos , Feminino , Transferência Embrionária/veterinária , Técnicas de Transferência Nuclear/veterinária , Blastocisto , Fibroblastos
2.
Theriogenology ; 203: 99-108, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37011429

RESUMO

The cloning of horses is a commercial reality, yet the availability of oocytes for cloned embryo production remains a major limitation. Immature oocytes collected from abattoir-sourced ovaries or from live mares by ovum pick-up (OPU) have both been used to generate cloned foals. However, the reported cloning efficiencies are difficult to compare due to the different somatic cell nuclear transfer (SCNT) techniques and conditions used. The objective of this retrospective study was to compare the in vitro and in vivo development of equine SCNT embryos produced using oocytes recovered from abattoir-sourced ovaries and from live mares by OPU. A total of 1,128 oocytes were obtained, of which 668 were abattoir-derived and 460 were OPU-derived. The methods used for in vitro maturation and SCNT were identical for both oocyte groups, and the embryos were cultured in Dulbecco's Modified Eagle's Medium/Nutrient Mixture F-12 Ham medium supplemented with 10% fetal calf serum. Embryo development in vitro was assessed, and Day 7 blastocysts were transferred to recipient mares. The embryos were transferred fresh when possible, and a cohort of vitrified-thawed OPU-derived blastocysts was also transferred. Pregnancy outcomes were recorded at Days 14, 42 and 90 of gestation and at foaling. The rates of cleavage (68.7 ± 3.9% vs 62.4 ± 4.7%) and development to the blastocyst stage (34.6 ± 3.3% vs 25.6 ± 2.0%) were superior for OPU-derived embryos compared with abattoir-derived embryos (P < 0.05). Following transfer of Day 7 blastocysts to a total of 77 recipient mares, the pregnancy rates at Days 14 and 42 of gestation were 37.7% and 27.3%, respectively. Beyond Day 42, the percentages of recipient mares that still had a viable conceptus at Day 90 (84.6% vs 37.5%) and gave birth to a healthy foal (61.5% vs 12.5%) were greater for the OPU group compared with the abattoir group (P < 0.05). Surprisingly, more favourable pregnancy outcomes were achieved when blastocysts were vitrified for later transfer, probably because the uterine receptivity of the recipient mares was more ideal. A total of 12 cloned foals were born, 9 of which were viable. Given the differences observed between the two oocyte groups, the use of OPU-harvested oocytes for generating cloned foals is clearly advantageous. Continued research is essential to better understand the oocyte deficiencies and increase the efficiency of equine cloning.


Assuntos
Clonagem de Organismos , Oócitos , Gravidez , Animais , Cavalos , Feminino , Estudos Retrospectivos , Clonagem de Organismos/veterinária , Clonagem de Organismos/métodos , Técnicas de Transferência Nuclear/veterinária , Blastocisto , Clonagem Molecular
3.
Cell Reprogram ; 22(4): 208-216, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32559409

RESUMO

The genetic diversity of Neotropical deer is increasingly jeopardized, owing to declining population size. Thus, the formation of cryobanking of somatic cells is important for the preservation of these species using cloning. The transformation of these cells into viable embryos has been hampered by a lack of endangered species oocytes. Accordingly, the aim of this study was to produce brown brocket deer embryos by interspecific somatic cell nuclear transfer (iSCNT), using goat or cattle oocytes as cytoplasts, and to elucidate embryo mitochondrial activity by measuring the expression levels of ATP6, COX3, and ND5. Cattle embryos produced by in vitro fertilization (IVF) were used as a control. There were no differences in the development of embryos produced by traditional SCNT and iSCNT when using either the goat cytoplasts (38.4% vs. 25.0% cleaved and 40.0% vs. 50.0% morula rates, respectively) or cattle cytoplast (72.8% vs. 65.5% cleaved and 11.3% vs. 5.9% blastocyst rates, respectively). Concerning the gene expression, no significant difference was observed when goat oocytes were used as cytoplasts. However, when using cattle oocytes and 16S as a reference gene, the iSCNT upregulated COX3, when compared with SCNT group. In contrast, when GAPDH was used as a reference gene, all the evaluated genes were upregulated in the iSCNT group, when compared with the IVF group. When compared with the SCNT group, only the expression of ATP6 was statistically different. In conclusion, it was demonstrated that interspecific nuclear transfer is a potentially useful tool for conservation programs of endangered similar deer species.


Assuntos
Cervos/embriologia , Cervos/genética , Desenvolvimento Embrionário , Regulação da Expressão Gênica no Desenvolvimento , Genes Mitocondriais , Animais , Blastocisto/metabolismo , Bovinos , Células Cultivadas , Clonagem de Organismos/veterinária , Complexo IV da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Embrião de Mamíferos/metabolismo , Feminino , Fertilização in vitro , Cabras , ATPases Mitocondriais Próton-Translocadoras/genética , ATPases Mitocondriais Próton-Translocadoras/metabolismo , Mórula/metabolismo , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Técnicas de Transferência Nuclear/veterinária , Oócitos/metabolismo , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA