Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 26(18)2021 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-34577046

RESUMO

In vitro assays of phagocytic activity showed that the peptide Pin2[G] stimulates phagocytosis in BMDM cells from 0.15 to 1.25 µg/mL, and in RAW 264.7 cells at 0.31 µg/mL. In the same way, the peptide FA1 induced phagocytosis in BMDM cells from 1.17 to 4.69 µg/mL and in RAW 264.7 cells at 150 µg/mL. Cytokine profiles of uninfected RAW 264.7 showed that Pin2[G] increased liberation TNF (from 1.25 to 10 µg/mL) and MCP-1 (10 µg/mL), and FA1 also increased the release of TNF (from 18.75 to 75 µg/mL) but did not increase the liberation of MCP-1. In RAW 264.7 macrophages infected with Salmonella enterica serovar Typhimurium, the expression of TNF increases with Pin2[G] (1.25-10 µg/mL) or FA1 (18.75-75 µg/mL). In these cells, FA1 also increases the expression of IL-12p70, IL-10 and IFN-γ when applied at concentrations of 37.5, 75 and 150 µg/mL, respectively. On the other hand, stimulation with 1.25 and 10 µg/mL of Pin2[G] promotes the expression of MCP-1 and IL-12p70, respectively. Finally, peptides treatment did not resolve murine gastric infection, but improves their physical condition. Cytokine profiles showed that FA1 reduces IFN-γ and MCP-1 but increases IL-10, while Pin2[G] reduces IFN-γ but increases the liberation of IL-6 and IL-12p70. This data suggests a promising activity of FA1 and Pin2[G] as immunomodulators of gastric infections in S. Typhimurium.


Assuntos
Peptídeos/farmacologia , Salmonella typhimurium , Animais , Imunomodulação/efeitos dos fármacos , Macrófagos , Camundongos , Fagocitose/efeitos dos fármacos , Células RAW 264.7
2.
Proteins ; 88(1): 175-186, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31325337

RESUMO

The spread of multidrug resistant bacteria owing to the intensive use of antibiotics is challenging current antibiotic therapies, and making the discovery and evaluation of new antimicrobial agents a high priority. The evaluation of novel peptide sequences of predicted antimicrobial peptides from different sources is valuable approach to identify alternative antibiotic leads. Two strategies were pursued in this study to evaluate novel antimicrobial peptides from the human ß-defensin family (hBD). In the first, a 32-residue peptide was designed based on the alignment of all available hBD primary structures, while in the second a putative 35-residue peptide, hBD10, was mined from the gene DEFB110. Both hBDconsensus and hBD10 were chemically synthesized, folded and purified. They showed antimicrobial activity against Escherichia coli, Staphylococcus aureus, and Mycobacterium tuberculosis, but were not hemolytic on human red blood cells. The NMR-based solution structure of hBDconsensus revealed that it adopts a classical ß-defensin fold and disulfide connectivities. Even though the mass spectrum of hBD10 confirmed the formation of three disulfide bonds, it showed limited dispersion in 1 H NMR spectra and structural studies were not pursued. The evaluation of different ß-defensin structures may identify new antimicrobial agents effective against multidrug-resistant bacterial strains.


Assuntos
Anti-Infecciosos/química , beta-Defensinas/química , Sequência de Aminoácidos , Anti-Infecciosos/farmacologia , Infecções Bacterianas/tratamento farmacológico , Descoberta de Drogas , Escherichia coli/efeitos dos fármacos , Humanos , Modelos Moleculares , Mycobacterium tuberculosis/efeitos dos fármacos , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Dobramento de Proteína , Staphylococcus aureus/efeitos dos fármacos , beta-Defensinas/farmacologia
3.
Artigo em Inglês | MEDLINE | ID: mdl-32366718

RESUMO

Two nonamidated host defense peptides named Pin2[G] and FA1 were evaluated against three types of pathogenic bacteria: two (Staphylococcus aureus UPD13 and Pseudomonas aeruginosa UPD3) isolated from diabetic foot ulcer patients, and another (Salmonella enterica serovar Typhimurium [ATCC 14028]) from a commercial collection. In vitro experiments showed that the antimicrobial performance of the synthetic peptides Pin2[G] and FA1 was modest, although FA1 was more effective than Pin2[G]. In contrast, Pin2[G] had superior in vivo anti-infective activity to FA1 in rabbit wound infections by the diabetic foot ulcer pathogens S. aureus UPD13 and P. aeruginosa UPD3. Indeed, Pin2[G] reduced bacterial colony counts of both S. aureus UPD13 and P. aeruginosa UPD3 by >100,000-fold after 48 to 72 h on skin wounds of infected rabbits, while in similar infected wounds, FA1 had no major effects at 72 to 96 h of treatment. Ceftriaxone was equally effective versus Pseudomonas but less effective versus S. aureus infections. Additionally, the two peptides were evaluated in mice against intragastrically inoculated S. enterica serovar Typhimurium (ATCC 14028). Only Pin2[G] at 0.56 mg/kg was effective in reducing systemic (liver) infection by >67-fold, equivalent to the effect of treatment with levofloxacin. Pin2[G] showed superior immunomodulatory activity in increasing chemokine production by a human bronchial cell line and suppressing polyinosinic-polycytidylic acid (poly[I:C])-induced proinflammatory IL-6 production. These data showed that the in vitro antimicrobial activity of these peptides was not correlated with their in vivo anti-infective activity and suggest that other factors such as immunomodulatory activity were more important.


Assuntos
Peptídeos Catiônicos Antimicrobianos , Infecções Estafilocócicas , Animais , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Peptídeos Catiônicos Antimicrobianos/farmacologia , Humanos , Camundongos , Pseudomonas aeruginosa , Coelhos , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus
4.
Amino Acids ; 52(3): 465-475, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32067123

RESUMO

δ-Atracotoxins, also known as δ-hexatoxins, are spider neurotoxic peptides, lethal to both vertebrates and insects. Their mechanism of action involves the binding to of the S3/S4 loop of the domain IV of the voltage-gated sodium channels (Nav). Because of the chemical difficulties of synthesizing folded synthetic δ-atracotoxins correctly, here we explore an expression system that is designed to produce biologically active recombinant δ-atracotoxins, and a number of variants, in order to establish certain amino acids implicated in the pharmacophore of this lethal neurotoxin. In order to elucidate and verify which amino acid residues play a key role that is toxic to vertebrates and insects, amino acid substitutes were produced by aligning the primary structures of several lethal δ-atracotoxins with those of δ-atracotoxins-Hv1b; a member of the δ-atracotoxin family that has low impact on vertebrates and is not toxic to insects. Our findings corroborate that the substitutions of the amino acid residue Y22 from δ-atracotoxin-Mg1a (Magi4) to K22 in δ-atracotoxin-Hv1b reduces its mammalian activity. Moreover, the substitutions of the amino acid residues Y22 and N26 from δ-atracotoxin-Mg1a (Magi4) to K22 and N26 in δ-atracotoxin-Hv1b reduces its insecticidal activity. Also, the basic residues K4 and R5 are important for keeping such insecticidal activity. Structural models suggest that such residues are clustered onto two bioactive surfaces, which share similar areas, previously reported as bioactive surfaces for scorpion α-toxins. Furthermore, these bioactive surfaces were also found to be similar to those found in related spider and anemone toxins, which affect the same Nav receptor, indicating that these motifs are important not only for scorpion but may be also for animal toxins that affect the S3/S4 loop of the domain IV of the Nav.


Assuntos
Inseticidas/química , Neurotoxinas/química , Venenos de Aranha/química , Motivos de Aminoácidos , Sequência de Aminoácidos/genética , Substituição de Aminoácidos/genética , Aminoácidos/genética , Animais , Gryllidae , Inseticidas/toxicidade , Dose Letal Mediana , Camundongos , Neurotoxinas/genética , Neurotoxinas/toxicidade , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/farmacologia , Venenos de Aranha/genética , Venenos de Aranha/toxicidade
5.
Protein Expr Purif ; 167: 105539, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31715251

RESUMO

At present, expressing antimicrobial peptides in bacterial models is considered a routine lab bench work. However, low expression yields of these types of proteins are usually obtained. In this work, the antimicrobial peptide human ß-defensin 2 (HBD2) was obtained in low expression yields in Escherichia coli BL21(DE3). To improve the expression yields of HBD2, some variables such as cell density, temperature, and length of induction, as well as the inducer concentration, were investigated using a 24-factorial design of experiments (DoE). This approach allowed us to identify the identification of critical variables (main effects and interactions among factors) affecting bacterial HBD2 expression. After the evaluation of 19 different combination, the best condition to express HBD2 had a pre-induction temperature of 37 °C, a cell density of 1.0 U (600 nm), an induction temperature of 20 °C and a 0.1 mM of gene expression inducer (IPTG) over four hours. Under such conditions, the expression yield of the HBD2 peptide was one order of magnitude higher than the peptide expression performed initially.


Assuntos
Projetos de Pesquisa , beta-Defensinas/biossíntese , Anti-Infecciosos , Escherichia coli/genética , Expressão Gênica , Humanos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , beta-Defensinas/genética
6.
Protein Expr Purif ; 154: 33-43, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30205154

RESUMO

A mRNA transcript that codes for a phospholipase (PLA2) was isolated from a single venom gland of the Bothrops ammodytoides viper. The PLA2 transcript was cloned onto a pCR®2.1-TOPO vector and subsequently expressed heterologously in the E. coli strain M15, using the pQE30 vector. The recombinant phospholipase was named rBamPLA2_1, and is composed of an N-terminal fusion protein of 16 residues, along with 122 residues from the mature protein that includes 14 cysteines that form 7 disulfide bonds. Following bacterial expression, rBamPLA2_1 was obtained from inclusion bodies and extracted using a chaotropic agent. rBamPLA2_1 had an experimental molecular mass of 15,692.5 Da that concurred with its theoretical molecular mass. rBamPLA2_1 was refolded in in vitro conditions and after refolding, three main protein fractions with similar molecular masses, were identified. Although, the three fractions were considered to represent different oxidized cystine isoforms, their secondary structures were comparable. All three recombinant isoforms were active on egg-yolk phospholipid and recognized similar cell membrane phospholipids to be native PLA2s, isolated from B. ammodytoides venom. A mixture of the three rBamPLA2_1 cystine isoforms was used to immunize a horse in order to produce serum antibodies (anti-rBamPLA2_1), which partially inhibited the indirect hemolytic activity of B. ammodytoides venom. Although, anti-rBamPLA2_1 antibodies were not able to recognize crotoxin, a PLA2 from the venom of a related but different viper genus, Crotalus durissus terrificus, they recognized PLA2s in other venoms from regional species of Bothrops.


Assuntos
Bothrops/genética , Clonagem Molecular , Venenos de Crotalídeos , DNA Complementar , Expressão Gênica , Fosfolipases A2 , Dobramento de Proteína , Animais , Venenos de Crotalídeos/biossíntese , Venenos de Crotalídeos/enzimologia , Venenos de Crotalídeos/genética , Venenos de Crotalídeos/imunologia , Escherichia coli/enzimologia , Escherichia coli/genética , Cavalos/imunologia , Fosfolipases A2/biossíntese , Fosfolipases A2/genética , Fosfolipases A2/imunologia , Fosfolipases A2/isolamento & purificação
7.
Cell Mol Life Sci ; 75(17): 3215-3229, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29427076

RESUMO

True Bugs (Insecta: Heteroptera) produce venom or saliva with diverse bioactivities depending on their feeding strategies. However, little is known about the molecular evolution of the venom toxins underlying these biological activities. We examined venom of the giant fish-killing water bug Lethocerus distinctifemur (Insecta: Belostomatidae) using infrared spectroscopy, transcriptomics, and proteomics. We report 132 venom proteins including putative enzymes, cytolytic toxins, and antimicrobial peptides. Over 73% (96 proteins) showed homology to venom proteins from assassin bugs (Reduviidae), including 21% (28 proteins from seven families) not known from other sources. These data suggest that numerous protein families were recruited into venom and diversified rapidly following the switch from phytophagy to predation by ancestral heteropterans, and then were retained over > 200 my of evolution. In contrast, trophic switches to blood-feeding (e.g. in Triatominae and Cimicidae) or reversions to plant-feeding (e.g., in Pentatomomorpha) were accompanied by rapid changes in the composition of venom/saliva, including the loss of many protein families.


Assuntos
Venenos de Artrópodes/genética , Evolução Molecular , Heterópteros/genética , Toxinas Biológicas/genética , Sequência de Aminoácidos , Animais , Venenos de Artrópodes/metabolismo , Peixes/parasitologia , Perfilação da Expressão Gênica/métodos , Genes de Insetos/genética , Heterópteros/metabolismo , Proteínas de Insetos/classificação , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Filogenia , Proteômica/métodos , Homologia de Sequência de Aminoácidos , Toxinas Biológicas/metabolismo , Água/parasitologia
8.
Int J Mol Sci ; 20(14)2019 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-31315176

RESUMO

In this study we cloned a chitinase gene (SmchiC), from Serratia marcescens isolated from the corpse of a Diatraea magnifactella lepidopteran, which is an important sugarcane pest. The chitinase gene SmchiC amplified from the S. marcescens genome was cloned into the transformation vector p2X35SChiC and used to transform tobacco (Nicotiana tabacum L. cv Petit Havana SR1). The resistance of these transgenic plants to the necrotrophic fungus Botrytis cinerea and to the pest Spodoptera frugiperda was evaluated: both the activity of chitinase as well as the resistance against B. cinerea and S. frugiperda was significantly higher in transgenic plants compared to the wild-type.


Assuntos
Proteínas de Bactérias/genética , Quitinases/genética , Resistência à Doença/genética , Nicotiana/genética , Serratia marcescens/genética , Transgenes , Animais , Proteínas de Bactérias/metabolismo , Botrytis/patogenicidade , Quitinases/metabolismo , Spodoptera/patogenicidade , Nicotiana/microbiologia , Nicotiana/parasitologia
9.
Amino Acids ; 50(7): 885-895, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29626299

RESUMO

The three-fingered toxin family and more precisely short-chain α-neurotoxins (also known as Type I α-neurotoxins) are crucial in defining the elapid envenomation process, but paradoxically, they are barely neutralized by current elapid snake antivenoms. This work has been focused on the primary structural identity among Type I neurotoxins in order to create a consensus short-chain α-neurotoxin with conserved characteristics. A multiple sequence alignment considering the twelve most toxic short-chain α-neurotoxins reported from the venoms of the elapid genera Acanthophis, Oxyuranus, Walterinnesia, Naja, Dendroaspis and Micrurus led us to propose a short-chain consensus α-neurotoxin, here named ScNtx. The synthetic ScNtx gene was de novo constructed and cloned into the expression vector pQE30 containing a 6His-Tag and an FXa proteolytic cleavage region. Escherichia coli Origami cells transfected with the pQE30/ScNtx vector expressed the recombinant consensus neurotoxin in a soluble form with a yield of 1.5 mg/L of culture medium. The 60-amino acid residue ScNtx contains canonical structural motifs similar to α-neurotoxins from African elapids and its LD50 of 3.8 µg/mice is similar to the most toxic short-chain α-neurotoxins reported from elapid venoms. Furthermore, ScNtx was also able to antagonize muscular, but not neuronal, nicotinic acetylcholine receptors (nAChR). Rabbits immunized with ScNtx were able to immune-recognize short-chain α-neurotoxins within whole elapid venoms. Type I neurotoxins are difficult to isolate and purify from natural sources; therefore, the heterologous expression of molecules such ScNtx, bearing crucial motifs and key amino acids, is a step forward to create common immunogens for developing cost-effective antivenoms with a wider spectrum of efficacy, quality and strong therapeutic value.


Assuntos
Venenos Elapídicos , Neurotoxinas , Biossíntese Peptídica , Peptídeos , Animais , Venenos Elapídicos/química , Venenos Elapídicos/imunologia , Elapidae , Camundongos , Neurotoxinas/biossíntese , Neurotoxinas/química , Neurotoxinas/imunologia , Neurotoxinas/farmacocinética , Peptídeos/química , Peptídeos/genética , Peptídeos/imunologia , Peptídeos/farmacologia , Coelhos , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/química , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/farmacologia
10.
Protein Expr Purif ; 136: 45-51, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28624494

RESUMO

The gene of the four disulfide-bridged defensin J1-1 from Capsicum was cloned into the expression vector pQE30 containing a 6His-tag as fusion protein. This construct was transfected into Origami strain of Escherichia coli and expressed after induction with isopropyl thiogalactoside (IPTG). The level of expression was 4 mg/L of culture medium, and the His-tagged recombinant defensin (HisXarJ1-1) was expressed exclusively into inclusion bodies. After solubilization, HisXarJ1-1 was purified by affinity and hydrophobic interaction chromatography. The reverse-phase HPLC profile of the HisXarJ1-1 product obtained from the affinity chromatography step showed single main peptide fraction of molecular masses of 7050.6 Da and after treatment with DTT a single fraction of 7, 042.6 Da corresponding to the reduced peptide was observed. An in vitro folding step of the HisXarJ1-1 generated a distinct profile of oxidized forms of the peptide this oxidized peptide was capable of binding phosphatidic acid in vitro. Possible dimer and oligomer of HisXarJ1-1 were visible in gel electrophoresis and immunodetected with anti-His antibodies. Pure recombinant defensin HisXarJ1-1 exhibited antibacterial activity against Pseudomonas aeruginosa.


Assuntos
Antibacterianos , Capsicum/genética , Defensinas , Proteínas de Plantas , Pseudomonas aeruginosa/crescimento & desenvolvimento , Antibacterianos/biossíntese , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Capsicum/metabolismo , Defensinas/biossíntese , Defensinas/genética , Defensinas/isolamento & purificação , Defensinas/farmacologia , Escherichia coli/genética , Escherichia coli/metabolismo , Corpos de Inclusão/química , Corpos de Inclusão/genética , Corpos de Inclusão/metabolismo , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Proteínas de Plantas/farmacologia , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/farmacologia
11.
PLoS Comput Biol ; 12(4): e1004786, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-27096600

RESUMO

Multifunctionality is a common trait of many natural proteins and peptides, yet the rules to generate such multifunctionality remain unclear. We propose that the rules defining some protein/peptide functions are compatible. To explore this hypothesis, we trained a computational method to predict cell-penetrating peptides at the sequence level and learned that antimicrobial peptides and DNA-binding proteins are compatible with the rules of our predictor. Based on this finding, we expected that designing peptides for CPP activity may render AMP and DNA-binding activities. To test this prediction, we designed peptides that embedded two independent functional domains (nuclear localization and yeast pheromone activity), linked by optimizing their composition to fit the rules characterizing cell-penetrating peptides. These peptides presented effective cell penetration, DNA-binding, pheromone and antimicrobial activities, thus confirming the effectiveness of our computational approach to design multifunctional peptides with potential therapeutic uses. Our computational implementation is available at http://bis.ifc.unam.mx/en/software/dcf.


Assuntos
Desenho de Fármacos , Peptídeos/química , Engenharia de Proteínas/métodos , Algoritmos , Sequência de Aminoácidos , Animais , Peptídeos Catiônicos Antimicrobianos/química , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/fisiologia , Peptídeos Penetradores de Células/química , Peptídeos Penetradores de Células/genética , Peptídeos Penetradores de Células/fisiologia , Células Cultivadas , Biologia Computacional , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/fisiologia , Escherichia coli/efeitos dos fármacos , Escherichia coli/crescimento & desenvolvimento , Aprendizado de Máquina , Camundongos , Modelos Estatísticos , Dados de Sequência Molecular , Sinais de Localização Nuclear , Peptídeos/genética , Peptídeos/fisiologia , Ligação Proteica , Engenharia de Proteínas/estatística & dados numéricos , Estrutura Secundária de Proteína
12.
Biochim Biophys Acta ; 1850(4): 657-66, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25484315

RESUMO

BACKGROUND: Arachnoid venoms contain numerous peptides with ion channel modifying and cytolytic activities. METHODS: We developed a green fluorescent protein (GFP)-based assay that can monitor the changes in currents through overexpressed inwardly rectifying K(+) channels (Kir2.1), in which GFP expression was increased by blockade of Kir2.1 current. Using this assay, we screened venom of many spider species. A peptide causing GFP decreasing effect was purified and sequenced. Electrophysiological and pain-inducing effects of the peptide were analyzed with whole-cell patch-clamp recordings and hot-plate test, respectively. RESULTS: Among venoms we screened, soluble venom from Lachesana sp. decreased the GFP expression. Purification and sequencing of the peptide showed that the peptide is identical to a pore-forming peptide purified from Lachesana tarabaevi venom. Whole cell patch-clamp recordings revealed that the peptide had no effect on Kir2.1 current. Instead, it induced a current that was attributable to the pore-formation of the peptide. The peptide was selectively incorporated into hyperpolarized, i.e., Kir2.1 expressing, cells and for this reason the peptide decreased GFP expression in our Kir2.1 assay. The pore-formation positively shifted the reversal potential and induced burst firings in the hippocampal neurons in a synaptic current-independent way. The application of the Lachesana sp. peptide induced pain-related behavior in mice. CONCLUSIONS: The peptide, which was found in Lachesana sp. venom, formed pores and thereby depolarized neurons and induced pain. GENERAL SIGNIFICANCE: Our data suggested an additional physiological role of the pore-forming peptides.


Assuntos
Neurônios/efeitos dos fármacos , Dor/induzido quimicamente , Peptídeos/farmacologia , Venenos de Aranha/farmacologia , Sequência de Aminoácidos , Animais , Proteínas de Fluorescência Verde/metabolismo , Camundongos , Dados de Sequência Molecular , Neurônios/fisiologia , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/fisiologia , Venenos de Aranha/química
13.
Molecules ; 21(2)2016 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-26901176

RESUMO

Four antimicrobial peptides (AMPs) named Pin2[G], Pin2[14], P18K and FA1 were chemically synthesized and purified. The four peptides were evaluated in the presence of eight commercial antibiotics against four microorganisms of medical importance: Escherichia coli, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae. The commercial antibiotics used were amoxicillin, azithromycin, ceftriaxone, gentamicin, levofloxacin, sulfamethoxazole, trimethoprim and vancomycin. The best AMP against P. aeruginosa was the peptide FA1, and the best AMP against S. aureus was Pin2[G]. Both FA1 and Pin2[G] were efficient against E. coli, but they were not effective against K. pneumoniae. As K. pneumoniae was resistant to most of the commercial antibiotics, combinations of the AMPs FA1 and Pin2[G] were prepared with these antibiotics. According to the fractional inhibitory concentration (FIC) index, the best antimicrobial combinations were obtained with concomitant applications of mixtures of FA1 with levofloxacin and sulfamethoxazole. However, combinations of FA1 or Pin2[G] with other antibiotics showed that total inhibitory effect of the combinations were greater than the sum of the individual effects of either the antimicrobial peptide or the antibiotic. We also evaluated the stability of the AMPs. The AMP Pin2[G] manifested the best performance in saline buffer, in supernatants of bacterial growth and in human blood plasma. Nevertheless, all AMPs were cleaved using endoproteolytic enzymes. These data show advantages and disadvantages of AMPs for potential clinical treatments of bacterial infections, using them in conjunction with commercial antibiotics.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/síntese química , Peptídeos Catiônicos Antimicrobianos/farmacologia , Farmacorresistência Bacteriana/efeitos dos fármacos , Quimioterapia Combinada , Escherichia coli/efeitos dos fármacos , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos , Venenos de Aranha/química , Staphylococcus aureus/efeitos dos fármacos
14.
Biochim Biophys Acta ; 1840(9): 2744-51, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24845726

RESUMO

BACKGROUND: The peptide discrepin from the α-KTx15 subfamily of scorpion toxins preferentially affects transient A-type potassium currents, which regulate many aspects of neuronal function in the central nervous system. However, the specific Kv channel targeted by discrepin and the molecular mechanism of interaction are still unknown. METHODS: Different variant peptides of discrepin were chemically synthesized and their effects were studied using patch clamp technique on rat cerebellum granular cells (CGC) and HEK cells transiently expressing Kv4.3 channels. RESULTS: Functional analysis indicated that nanomolar concentrations of native discrepin blocked Kv4.3 expressed channels, as previously observed in CGC. Similarly, the apparent affinities of all mutated peptides for Kv4.3 expressed channels were analogous to those found in CGC. In particular, in the double variant [V6K, D20K] the apparent affinity increased about 10-fold, whereas in variants carrying a deletion (ΔK13) or substitution (K13A) at position K13, the blockage was removed and the apparent affinity decreased more than 20-fold. CONCLUSION: These results indicate that Kv4.3 is likely the target of discrepin and highlight the importance of the basic residue K13, located in the α-helix of the toxin, for current blockage. GENERAL SIGNIFICANCE: We report the first example of a Kv4 subfamily potassium channel blocked by discrepin and identify the amino acid residues responsible for the blockage. The availability of discrepin variant peptides stimulates further research on the functions and pharmacology of neuronal Kv4 channels and on their possible roles in neurodegenerative disorders.


Assuntos
Cerebelo/metabolismo , Venenos de Escorpião/química , Canais de Potássio Shal/antagonistas & inibidores , Sequência de Aminoácidos , Animais , Cerebelo/citologia , Células HEK293 , Humanos , Estrutura Secundária de Proteína , Ratos , Ratos Wistar , Venenos de Escorpião/genética , Venenos de Escorpião/farmacologia , Escorpiões/química , Deleção de Sequência , Canais de Potássio Shal/genética , Canais de Potássio Shal/metabolismo
15.
J Biol Chem ; 288(44): 31867-79, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-24047891

RESUMO

The melanization reaction promoted by the prophenoloxidase-activating system is an essential defense response in invertebrates subjected to regulatory mechanisms that are still not fully understood. We report here the finding and characterization of a novel trypsin inhibitor, named panulirin, isolated from the hemocytes of the spiny lobster Panulirus argus with regulatory functions on the melanization cascade. Panulirin is a cationic peptide (pI 9.5) composed of 48 amino acid residues (5.3 kDa), with six cysteine residues forming disulfide bridges. Its primary sequence was determined by combining Edman degradation/N-terminal sequencing and electrospray ionization-MS/MS spectrometry. The low amino acid sequence similarity with known proteins indicates that it represents a new family of peptidase inhibitors. Panulirin is a competitive and reversible tight-binding inhibitor of trypsin (Ki = 8.6 nm) with a notable specificity because it does not inhibit serine peptidases such as subtilisin, elastase, chymotrypsin, thrombin, and plasmin. The removal of panulirin from the lobster hemocyte lysate leads to an increase in phenoloxidase response to LPS. Likewise, the addition of increasing concentrations of panulirin to a lobster hemocyte lysate, previously depleted of trypsin-inhibitory activity, decreased the phenoloxidase response to LPS in a concentration-dependent fashion. These results indicate that panulirin is implicated in the regulation of the melanization cascade in P. argus by inhibiting peptidase(s) in the pathway toward the activation of the prophenoloxidase enzyme.


Assuntos
Proteínas de Artrópodes/metabolismo , Catecol Oxidase/metabolismo , Precursores Enzimáticos/metabolismo , Palinuridae/metabolismo , Inibidores da Tripsina/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/química , Proteínas de Artrópodes/genética , Catecol Oxidase/química , Catecol Oxidase/genética , Relação Dose-Resposta a Droga , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/fisiologia , Precursores Enzimáticos/química , Precursores Enzimáticos/genética , Hemócitos/química , Hemócitos/citologia , Hemócitos/metabolismo , Lipopolissacarídeos/farmacologia , Dados de Sequência Molecular , Palinuridae/química , Palinuridae/genética , Tripsina/química , Inibidores da Tripsina/química , Inibidores da Tripsina/genética
16.
Int J Biol Macromol ; 275(Pt 1): 133461, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38945343

RESUMO

Small single-chain variable fragments (scFv) are promising biomolecules to inhibit and neutralize toxins and to act as antivenoms. In this work, we aimed to produce a functional scFv-6009FV in the yeast Pichia pastoris, which inhibits the pure Cn2 neurotoxin and the whole venom of Centruroides noxius. We were able to achieve yields of up to 31.6 ± 2 mg/L in flasks. Furthermore, the protein showed a structure of 6.1 % α-helix, 49.1 % ß-sheet, and 44.8 % of random coil by CD. Mass spectrometry confirmed the amino acid sequence and showed no glycosylation profile for this molecule. Purified scFv-6009FV allowed us to develop anti-scFvs in rabbits, which were then used in affinity columns to purify other scFvs. Determination of its half-maximal inhibitory concentration value (IC50) was 40 % better than the scFvs produced by E. coli as a control. Finally, we found that scFv-6009FV was able to inhibit ex vivo the pure Cn2 toxin and the whole venom from C. noxius in murine rescue experiments. These results demonstrated that under the conditions assayed here, P. pastoris is suited to produce scFv-6009FV that, compared to scFvs produced by E. coli, maintains the characteristics of an antibody and neutralizes the Cn2 toxin more effectively.

17.
Artigo em Inglês | MEDLINE | ID: mdl-38505508

RESUMO

Background: In Colombia, several species of Buthidae scorpions belonging to the genera Centruroides and Tityus coexist, and their stings are considered life-threatening to humans because of their venom neurotoxins. Despite previous studies focusing on neurotoxins from these scorpion genera, little is known about the enzymes present in their venoms and their relationship with whole venom toxicity. Methods: Here, using proteomic and biochemical protocols the enzymatic activities of the venoms of three Colombian scorpion species, C. margaritatus, T. pachyurus, and T. n. sp. aff. metuendus, were compared to establish the presence and absence of enzymes such as phospholipases, hyaluronidases, and proteases that could be related to venom toxicity. Results: C. margaritatus was positive for hyaluronidases, T. n. sp. aff. metuendus for proteases, and T. pachyurus exhibited activity for all three mentioned enzymes. Conclusion: This information provides valuable insights into the specific enzyme diversity of each species' venom and their potential role in venom toxicity, which could contribute to the development of better treatments and prevention strategies for scorpion envenomation.

18.
Acta Trop ; 252: 107134, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38286350

RESUMO

The venom fractions of three buthid scorpion species from Colombia, C. margaritatus, T. pachyurus and T. n. sp. aff. metuendus, were examined for antimicrobial and toxicity toward mice and insects. The three venoms were separated into individual fractions using RP-HPLC, resulting in 85 fractions from C. margaritatus, 106 from T. pachyurus, and 70 from T. n. sp. aff. metuendus. The major fractions from the three scorpion venoms, which were eluted between 35 and 50 min, were tested for antimicrobial activity and toxicity. It was confirmed that the venom of the three species contains fractions with antimicrobial peptides that were evaluated against two bacterial strains of public health importance, Pseudomonas aeruginosa and Staphylococcus aureus. The venom of C. margaritatus had two antimicrobial fractions that showed activity against the named tested strains. The venom of T. pachyurus had three fractions that showed activity against S. aureus and two against both bacterial strains. Finally, the venom of T. n. sp. aff. metuendus had one fraction that showed activity against S. aureus, and five fractions showed activity against both bacterial strains. Also, some peptide fractions from the three venoms were toxic to mice. Last, the venoms of C. margaritatus and T. pachyurus were used as immunogens to obtain neutralizing antibodies against its respective venoms and to observe antibody recognition to related and unrelated scorpion venoms. A total of 15 mg of lyophilized antibodies were able to neutralize 1.5⋅LD50 of the venoms from T. n. sp. aff. metuendus, T. pachyurus and C. margaritatus, respectively. This information provides valuable insights into the diversity of each species' venom and their potential role in antimicrobial and venom toxicity.


Assuntos
Animais Peçonhentos , Anti-Infecciosos , Venenos de Escorpião , Camundongos , Animais , Sequência de Aminoácidos , Escorpiões , Venenos de Escorpião/toxicidade , Colômbia , Staphylococcus aureus
19.
Toxicon ; 237: 107528, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38013057

RESUMO

Viperids of the genus Lachesis, also known as bushmasters, are capable of injecting great amounts of venom that cause severe envenomation incidents. Since phospholipases type A2 are mainly involved in edema and myonecrosis within the snakebite sites, in this work, the isolation, amino acid sequence and biochemical characterization of the first phospholipase type A2 from the venom of Lachesis acrochorda, named Lacro_PLA2, is described. Lacro_PLA2 is an acidic aspartic 49 calcium-dependent phospholipase A2 with 93% similarity to the L. stenophrys phospholipase. Lacro_PLA2 has a molecular mass of 13,969.7 Da and an experimental isoelectric point around 5.3. A combination of N-terminal Edman degradation and MS/MS spectrometry analyses revealed that Lacro_PLA2 contains 122 residues including 14 cysteines that form 7 disulfide bridges. A predicted 3D model shows a high resemblance to other viperid phospholipases. Nevertheless, immunochemical and phospholipase neutralization tests revealed a notorious level of immunorecognition of the isolated protein by two polyclonal antibodies from viperids from different genus, which suggest that Lacro_PLA2 resembles more to bothropic phospholipases. Lacro_PLA2 also showed significantly high edema activity when was injected into mice; so, it could be an alternative antigen in the development of antibodies against toxins of this group of viperids, seeking to improve commercial polyclonal antivenoms.


Assuntos
Crotalinae , Viperidae , Animais , Camundongos , Viperidae/metabolismo , Espectrometria de Massas em Tandem , Fosfolipases A2/química , Venenos de Víboras/toxicidade , Edema/induzido quimicamente
20.
Toxins (Basel) ; 16(2)2024 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-38393182

RESUMO

Snakebite accident treatment requires the administration of antivenoms that provide efficacy and effectiveness against several snake venoms of the same genus or family. The low number of immunogenic components in venom mixtures that allow the production of antivenoms consequently gives them partial neutralization and a suboptimal pharmacological response. This study evaluates the immunorecognition and neutralizing efficacy of the polyvalent anticoral antivenom from the Instituto Nacional de Salud (INS) of Colombia against the heterologous endemic venoms of Micrurus medemi, and M. sangilensis, and M. helleri by assessing immunoreactivity through affinity chromatography, ELISA, Western blot, and neutralization capability. Immunorecognition towards the venoms of M. medemi and M. sangilensis showed values of 62% and 68% of the protein composition according to the immunoaffinity matrix, respectively. The analysis by Western blot depicted the highest recognition patterns for M. medemi, followed by M. sangilensis, and finally by M. helleri. These findings suggest that the venom compositions are closely related and exhibit similar recognition by the antivenom. According to enzyme immunoassays, M. helleri requires a higher amount of antivenom to achieve recognition than the others. Besides reinforcing the evaluation of INS antivenom capability, this work recommends the use of M. helleri in the production of Colombian antisera.


Assuntos
Antivenenos , Cobras Corais , Animais , Cobras Corais/metabolismo , Colômbia , Venenos Elapídicos/química , Venenos de Serpentes/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA