Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 183
Filtrar
Mais filtros

País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Neurochem Res ; 48(10): 3212-3227, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37402036

RESUMO

Astrocytes release numerous factors known to contribute to the process of synaptogenesis, yet knowledge about the signals that control their release is limited. We hypothesized that neuron-derived signals stimulate astrocytes, which respond to neurons through the modulation of astrocyte-released synaptogenic factors. Here we investigate the effect of cholinergic stimulation of astrocytes on synaptogenesis in co-cultured neurons. Using a culture system where primary rat astrocytes and primary rat neurons are first grown separately allowed us to independently manipulate astrocyte cholinergic signaling. Subsequent co-culture of pre-stimulated astrocytes with naïve neurons enabled us to assess how prior stimulation of astrocyte acetylcholine receptors uniquely modulates neuronal synapse formation. Pre-treatment of astrocytes with the acetylcholine receptor agonist carbachol increased the expression of synaptic proteins, the number of pre- and postsynaptic puncta, and the number of functional synapses in hippocampal neurons after 24 h in co-culture. Astrocyte secretion of the synaptogenic protein thrombospondin-1 increased after cholinergic stimulation and inhibition of the receptor for thrombospondins prevented the increase in neuronal synaptic structures. Thus, we identified a novel mechanism of neuron-astrocyte-neuron communication, where neuronal release of acetylcholine stimulates astrocytes to release synaptogenic proteins leading to increased synaptogenesis in neurons. This study provides new insights into the role of neurotransmitter receptors in developing astrocytes and into our understanding of the modulation of astrocyte-induced synaptogenesis.


Assuntos
Astrócitos , Sinapses , Ratos , Animais , Astrócitos/metabolismo , Sinapses/metabolismo , Neurônios/metabolismo , Técnicas de Cocultura , Colinérgicos/farmacologia , Colinérgicos/metabolismo
2.
Environ Toxicol ; 38(4): 899-913, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36629036

RESUMO

Epidemiological studies support an association between air pollution exposure, specifically particulate matter (PM), and neurodegenerative disease. Diesel exhaust (DE) is a principal component of ambient air pollution and a major contributor of PM. Our study aimed to examine whether early-life perinatal DE exposure is sufficient to affect behavioral and biochemical endpoints related to Alzheimer's disease later in life. To achieve this, mice were perinatally exposed (embryonic day 0-postnatal day 21) to DE (250-300 µg/m3 ) or filtered air (FA), and allowed to reach aged status (>18 months). Mice underwent behavioral assessment at 6 and 20 months of age, with tissue collected at 22 months for biochemical endpoints. At 6 months, minimal changes were noted in home-cage behavior of DE treated animals. At 20 months, an alternation deficit was noted with the T-maze, although no difference was seen in the object location task or any home-cage metrics. DE exposure did not alter the expression of Aß42, phosphorylated tau S199, or total tau. However, IBA-1 protein, a microglial activation marker, was significantly higher in DE exposed animals. Further, lipid peroxidation levels were significantly higher in the DE exposed animals compared to FA controls. Cytokine levels were largely unchanged with DE exposure, suggesting a lack of inflammation despite persistent lipid peroxidation. Taken together, the findings of this study support that perinatal exposure alone is sufficient to cause lasting changes in the brain, although the effects appear to be less striking than those previously reported in younger animals, suggesting some effects do not persist over time. These findings are encouraging from a public health standpoint and support the aggressive reduction of DE emissions to reduce lifetime exposure and potentially reduce disease outcome.


Assuntos
Poluentes Atmosféricos , Doenças Neurodegenerativas , Feminino , Gravidez , Camundongos , Animais , Emissões de Veículos , Encéfalo , Material Particulado
3.
BMC Neurosci ; 23(1): 52, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-36056313

RESUMO

BACKGROUND: Paraoxonase 2 (PON2) is an intracellular antioxidant enzyme located at the inner mitochondrial membrane. Previous studies have found PON2 to be an important antioxidant in a variety of cellular systems, such as the cardiovascular and renal system. Recent work has also suggested that PON2 plays an important role in the central nervous system (CNS), as decreased PON2 expression in the CNS leads to higher oxidative stress and subsequent cell toxicity. However, the precise role of PON2 in the CNS is still largely unknown, and what role it may play in specific regions of the brain remains unexamined. Dopamine metabolism generates considerable oxidative stress and antioxidant function is critical to the survival of dopaminergic neurons, providing a potential mechanism for PON2 in the dopaminergic system. METHODS: In this study, we investigated the role of PON2 in the dopaminergic system of the mouse brain by comparing transcript and protein expression of dopaminergic-related genes in wildtype (WT) and PON2 deficient (PON2-def) mouse striatum, and exposing WT cultured primary neurons to dopamine receptor agonists. RESULTS: We found alterations in multiple key dopaminergic genes at the transcript level, however many of these changes were not observed at the protein level. In cultured neurons, PON2 mRNA and protein were increased upon exposure to quinpirole, a dopamine receptor 2/3 (DRD2/3) agonist, but not fenoldopam, a dopamine receptor 1/5 (DRD1/5) agonist, suggesting a receptor-specific role in dopamine signaling. CONCLUSIONS: Our findings suggest PON2 deficiency significantly impacts the dopaminergic system at the transcript level and may play a role in mitigating oxidative stress in this system further downstream through dopamine receptor signaling.


Assuntos
Arildialquilfosfatase/metabolismo , Encéfalo/metabolismo , Animais , Antioxidantes/metabolismo , Arildialquilfosfatase/genética , Dopamina/metabolismo , Camundongos , Estresse Oxidativo , Receptores Dopaminérgicos/metabolismo
4.
World J Microbiol Biotechnol ; 36(8): 113, 2020 Jul 13.
Artigo em Inglês | MEDLINE | ID: mdl-32656684

RESUMO

Commercial products based on Trichoderma are obtained mainly from solid-state fermentation. Submerged liquid fermentation is the most appropriate method compared to the solid medium for large-scale production of Trichoderma spp. The present study aimed to optimize the combination of key variables that influence the liquid fermentation process of Trichoderma asperelloides LQC-96 for conidial production coupled with its efficiency in the control of Sclerotinia sclerotiorum. In addition, we verified whether the optimized culture conditions can be used for the conidial production of Trichoderma erinaceum T-12 and T-18 and Trichoderma harzianum T-15. Fermentation studies were performed in shake flasks following a planned experimental design to reduce the number of tests and consumable costs. The effect of temperature, pH, photoperiod, carbon:nitrogen ratio and water activity on conidial production were assessed, which of pH was the only meaningful factor contributing to increased conidial production of T. asperelloides LQC-96. From the five variables studied initially, pH and C:N ratio were further used in the second design (rotational central composite design-RCCD). Hence, the best conditions for the production of T. asperelloides LQC-96 conidia by liquid fermentation consisted of initial pH of 3.5, C:N ratio of 200:1 at 30 °C, without glycerol, and under 24 h photoperiod. The highest conidial concentration was observed after seven days of fermentation. Under these optimal conditions, T. erinaceum T-12 and T-18, and T. harzianum T-15 were also cultivated, but only LQC-96 efficiently parasitized S. sclerotiorum, precluding sclerotium myceliogenic germination. Our findings propose optimal fermentation conditions that maximize conidial production of T. asperelloides as a potential biofungicide against S. sclerotiorum.


Assuntos
Ascomicetos/metabolismo , Fermentação , Hypocreales/metabolismo , Reatores Biológicos , Carbono/metabolismo , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Nitrogênio/metabolismo , Fotoperíodo , Esporos Fúngicos/metabolismo , Temperatura
5.
Brain Behav Immun ; 78: 105-115, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30668980

RESUMO

Several epidemiological studies have shown associations between developmental exposure to traffic-related air pollution and increased risk for autism spectrum disorders (ASD), a spectrum of neurodevelopmental disorders with increasing prevalence rate in the United States. Though animal studies have provided support for these associations, little is known regarding possible underlying mechanisms. In a previous study we found that exposure of C57BL/6J mice of both sexes to environmentally relevant levels (250-300 µg/m3) of diesel exhaust (DE) from embryonic day 0 to postnatal day 21 (E0 to PND21) caused significant changes in all three characteristic behavioral domains of ASD in the offspring. In the present study we investigated a potential mechanistic pathway that may be of relevance for ASD-like changes associated with developmental DE exposure. Using the same DE exposure protocol (250-300 µg/m3 DE from E0 to PND21) several molecular markers were examined in the brains of male and female mice at PND3, 21, and 60. Exposure to DE as above increased levels of interleukin-6 (IL-6) in placenta and in neonatal brain. The JAK2/STAT3 pathway, a target for IL-6, was activated by STAT3 phosphorylation, and the expression of DNA methyltransferase 1 (DNMT1), a STAT3 target gene, was increased in DE-exposed neonatal brain. DNMT1 has been reported to down-regulate expression of reelin (RELN), an extracellular matrix glycoprotein important in regulating the processes of neuronal migration. RELN is considered an important modulator for ASD, since there are several polymorphisms in this gene linked to the disease, and since lower levels of RELN have been reported in brains of ASD patients. We observed decreased RELN expression in brains of the DE-exposed mice at PND3. Since disorganized patches in the prefrontal cortex have been reported in ASD patients and disrupted cortical organization has been found in RELN-deficient mice, we also assessed cortical organization, by labeling cells expressing the lamina-specific-markers RELN and calretinin. In DE-exposed mice we found increased cell density in deeper cortex (lamina layers VI-IV) for cells expressing either RELN or calretinin. These findings demonstrate that developmental DE exposure is associated with subtle disorganization of the cerebral cortex at PND60, and suggest a pathway involving IL-6, STAT3, and DNMT1 leading to downregulation of RELN expression that could be contributing to this long-lasting disruption in cortical laminar organization.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Córtex Cerebral/fisiopatologia , Proteínas da Matriz Extracelular/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Serina Endopeptidases/metabolismo , Emissões de Veículos/toxicidade , Poluentes Atmosféricos/toxicidade , Animais , Encéfalo/metabolismo , Calbindina 2 , Moléculas de Adesão Celular Neuronais/genética , Córtex Cerebral/metabolismo , Proteínas da Matriz Extracelular/genética , Feminino , Exposição por Inalação/efeitos adversos , Interleucina-6/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Proteínas do Tecido Nervoso/genética , Córtex Pré-Frontal/metabolismo , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia , Proteína Reelina , Serina Endopeptidases/genética
6.
Part Fibre Toxicol ; 15(1): 18, 2018 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-29678176

RESUMO

BACKGROUND: Escalating prevalence of autism spectrum disorders (ASD) in recent decades has triggered increasing efforts in understanding roles played by environmental risk factors as a way to address this widespread public health concern. Several epidemiological studies show associations between developmental exposure to traffic-related air pollution and increased ASD risk. In rodent models, a limited number of studies have shown that developmental exposure to ambient ultrafine particulates or diesel exhaust (DE) can result in behavioral phenotypes consistent with mild ASD. We performed a series of experiments to determine whether developmental DE exposure induces ASD-related behaviors in mice. RESULTS: C57Bl/6J mice were exposed from embryonic day 0 to postnatal day 21 to 250-300 µg/m3 DE or filtered air (FA) as control. Mice exposed developmentally to DE exhibited deficits in all three of the hallmark categories of ASD behavior: reduced social interaction in the reciprocal interaction and social preference tests, increased repetitive behavior in the T-maze and marble-burying test, and reduced or altered communication as assessed by measuring isolation-induced ultrasonic vocalizations and responses to social odors. CONCLUSIONS: These findings demonstrate that exposure to traffic-related air pollution, in particular that associated with diesel-fuel combustion, can cause ASD-related behavioral changes in mice, and raise concern about air pollution as a contributor to the onset of ASD in humans.


Assuntos
Poluentes Atmosféricos/toxicidade , Transtorno Autístico/induzido quimicamente , Comportamento Animal/efeitos dos fármacos , Exposição por Inalação/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/induzido quimicamente , Emissões de Veículos/toxicidade , Animais , Animais Recém-Nascidos , Transtorno Autístico/fisiopatologia , Modelos Animais de Doenças , Feminino , Idade Gestacional , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Gravidez , Efeitos Tardios da Exposição Pré-Natal/fisiopatologia
7.
Arch Toxicol ; 92(5): 1815-1829, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29523932

RESUMO

Adult neurogenesis is the process by which neural stem cells give rise to new functional neurons in specific regions of the adult brain, a process that occurs throughout life. Significantly, neurodegenerative and psychiatric disorders present suppressed neurogenesis, activated microglia, and neuroinflammation. Traffic-related air pollution has been shown to adversely affect the central nervous system. As the cardinal effects of air pollution exposure are microglial activation, and ensuing oxidative stress and neuroinflammation, we investigated whether acute exposures to diesel exhaust (DE) would inhibit adult neurogenesis in mice. Mice were exposed for 6 h to DE at a PM2.5 concentration of 250-300 µg/m3, followed by assessment of adult neurogenesis in the hippocampal subgranular zone (SGZ), the subventricular zone (SVZ), and olfactory bulb (OB). DE impaired cellular proliferation in the SGZ and SVZ in males, but not females. DE reduced adult neurogenesis, with male mice showing fewer new neurons in the SGZ, SVZ, and OB, and females showing fewer new neurons only in the OB. To assess whether blocking microglial activation protected against DE-induced suppression of adult hippocampal neurogenesis, male mice were pre-treated with pioglitazone (PGZ) prior to DE exposure. The effects of DE exposure on microglia, as well as neuroinflammation and oxidative stress, were reduced by PGZ. PGZ also antagonized DE-induced suppression of neurogenesis in the SGZ. These results suggest that DE exposure impairs adult neurogenesis in a sex-dependent manner, by a mechanism likely to involve microglia activation and neuroinflammation.


Assuntos
Encéfalo/efeitos dos fármacos , Neurogênese/efeitos dos fármacos , Pioglitazona/farmacologia , Emissões de Veículos/toxicidade , Animais , Encéfalo/patologia , Proliferação de Células/efeitos dos fármacos , Feminino , Masculino , Camundongos Endogâmicos C57BL , Microglia/efeitos dos fármacos , Microglia/patologia , Substâncias Protetoras/farmacologia , Fatores Sexuais , Testes de Toxicidade Aguda/métodos
8.
Environ Health ; 15: 5, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26768246

RESUMO

Increasingly, feed additives for livestock, such as amino acids and vitamins, are being produced by Gram-negative bacteria, particularly Escherichia coli. The potential therefore exists for animals, consumers and workers to be exposed to possibly harmful amounts of endotoxin from these products. The aim of this review was to assess the extent of the risk from endotoxins in feed additives and to calculate how such risk can be assessed from the properties of the additive. Livestock are frequently exposed to a relatively high content of endotoxin in the diet: no additional hazard to livestock would be anticipated if the endotoxin concentration of the feed additive falls in the same range as feedstuffs. Consumer exposure will be unaffected by the consumption of food derived from animals receiving endotoxin-containing feed, because the small concentrations of endotoxin absorbed do not accumulate in edible tissues. In contrast, workers processing a dusty additive may be exposed to hazardous amounts of endotoxin even if the endotoxin concentration of the product is low. A calculation method is proposed to compare the potential risk to the worker, based on the dusting potential, the endotoxin concentration and technical guidance of the European Food Safety Authority, with national exposure limits.


Assuntos
Poluentes Ocupacionais do Ar/intoxicação , Endotoxinas/intoxicação , Escherichia coli , Aditivos Alimentares/intoxicação , Gado , Doenças dos Trabalhadores Agrícolas/induzido quimicamente , Ração Animal/intoxicação , Animais , Endotoxinas/química , Indústria de Processamento de Alimentos , Humanos , Exposição Ocupacional/estatística & dados numéricos , Medição de Risco
9.
Biochim Biophys Acta ; 1831(2): 263-75, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23010475

RESUMO

Disruption of cholesterol homeostasis in the central nervous system (CNS) has been associated with neurological, neurodegenerative, and neurodevelopmental disorders. The CNS is a closed system with regard to cholesterol homeostasis, as cholesterol-delivering lipoproteins from the periphery cannot pass the blood-brain-barrier and enter the brain. Different cell types in the brain have different functions in the regulation of cholesterol homeostasis, with astrocytes producing and releasing apolipoprotein E and lipoproteins, and neurons metabolizing cholesterol to 24(S)-hydroxycholesterol. We present evidence that astrocytes and neurons adopt different mechanisms also in regulating cholesterol efflux. We found that in astrocytes cholesterol efflux is induced by both lipid-free apolipoproteins and lipoproteins, while cholesterol removal from neurons is triggered only by lipoproteins. The main pathway by which apolipoproteins induce cholesterol efflux is through ABCA1. By upregulating ABCA1 levels and by inhibiting its activity and silencing its expression, we show that ABCA1 is involved in cholesterol efflux from astrocytes but not from neurons. Furthermore, our results suggest that ABCG1 is involved in cholesterol efflux to apolipoproteins and lipoproteins from astrocytes but not from neurons, while ABCG4, whose expression is much higher in neurons than astrocytes, is involved in cholesterol efflux from neurons but not astrocytes. These results indicate that different mechanisms regulate cholesterol efflux from neurons and astrocytes, reflecting the different roles that these cell types play in brain cholesterol homeostasis. These results are important in understanding cellular targets of therapeutic drugs under development for the treatments of conditions associated with altered cholesterol homeostasis in the CNS.


Assuntos
Astrócitos/metabolismo , Encéfalo/metabolismo , Colesterol/metabolismo , Homeostase , Neurônios/metabolismo , Transportador 1 de Cassete de Ligação de ATP , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Transporte Biológico , Western Blotting , Encéfalo/citologia , Células Cultivadas , Ratos , Ratos Sprague-Dawley , Reação em Cadeia da Polimerase em Tempo Real
10.
Toxicol Appl Pharmacol ; 274(3): 372-82, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24342266

RESUMO

Evidence from in vivo and epidemiological studies suggests that organophosphorus insecticides (OPs) are developmental neurotoxicants, but possible underlying mechanisms are still unclear. Astrocytes are increasingly recognized for their active role in normal neuronal development. This study sought to investigate whether the widely-used OP diazinon (DZ), and its oxygen metabolite diazoxon (DZO), would affect glial-neuronal interactions as a potential mechanism of developmental neurotoxicity. Specifically, we investigated the effects of DZ and DZO on the ability of astrocytes to foster neurite outgrowth in primary hippocampal neurons. The results show that both DZ and DZO adversely affect astrocyte function, resulting in inhibited neurite outgrowth in hippocampal neurons. This effect appears to be mediated by oxidative stress, as indicated by OP-induced increased reactive oxygen species production in astrocytes and prevention of neurite outgrowth inhibition by antioxidants. The concentrations of OPs were devoid of cytotoxicity, and cause limited acetylcholinesterase inhibition in astrocytes (18 and 25% for DZ and DZO, respectively). Among astrocytic neuritogenic factors, the most important one is the extracellular matrix protein fibronectin. DZ and DZO decreased levels of fibronectin in astrocytes, and this effect was also attenuated by antioxidants. Underscoring the importance of fibronectin in this context, adding exogenous fibronectin to the co-culture system successfully prevented inhibition of neurite outgrowth caused by DZ and DZO. These results indicate that DZ and DZO increase oxidative stress in astrocytes, and this in turn modulates astrocytic fibronectin, leading to impaired neurite outgrowth in hippocampal neurons.


Assuntos
Astrócitos/efeitos dos fármacos , Diazinon/toxicidade , Hipocampo/citologia , Neurogênese/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Compostos Organofosforados/toxicidade , Acetilcolinesterase/metabolismo , Animais , Antioxidantes/farmacologia , Astrócitos/citologia , Astrócitos/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Técnicas de Cocultura , Fibronectinas/genética , Fibronectinas/metabolismo , Hipocampo/efeitos dos fármacos , Inseticidas/toxicidade , Neurônios/citologia , Neurônios/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Ratos
11.
Alcohol Alcohol ; 49(6): 626-34, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25081040

RESUMO

AIMS: Cholesterol plays a pivotal role in many aspects of brain development; reduced cholesterol levels during brain development, as a consequence of genetic defects in cholesterol biosynthesis, leads to severe brain damage, including microcephaly and mental retardation, both of which are also hallmarks of the fetal alcohol syndrome. We had previously shown that ethanol up-regulates the levels of two cholesterol transporters, ABCA1 (ATP binding cassette-A1) and ABCG1, leading to increased cholesterol efflux and decreased cholesterol content in astrocytes in vitro. In the present study we investigated whether similar effects could be seen in vivo. METHODS: Pregnant Sprague-Dawley rats were fed liquid diets containing 36% of the calories from ethanol from gestational day (GD) 6 to GD 21. A pair-fed control groups and an ad libitum control group were included in the study. ABCA1 and ABCG1 protein expression and cholesterol and phospholipid levels were measured in the neocortex of female and male fetuses at GD 21. RESULTS: Body weights were decreased in female fetuses as a consequence of ethanol treatments. ABCA1 and ABCG1 protein levels were increased, and cholesterol levels were decreased, in the neocortex of ethanol-exposed female, but not male, fetuses. Levels of phospholipids were unchanged. Control female fetuses fed ad libitum displayed an up-regulation of ABCA1 and a decrease in cholesterol content compared with pair-fed controls, suggesting that a compensatory up-regulation of cholesterol levels may occur during food restriction. CONCLUSION: Maternal ethanol consumption may affect fetal brain development by increasing cholesterol transporters' expression and reducing brain cholesterol levels.


Assuntos
Transportador 1 de Cassete de Ligação de ATP/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Química Encefálica/efeitos dos fármacos , Colesterol/análise , Etanol/efeitos adversos , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Transportador 1 de Cassete de Ligação de ATP/análise , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Transportadores de Cassetes de Ligação de ATP/análise , Animais , Western Blotting , Encéfalo/efeitos dos fármacos , Encéfalo/embriologia , Feminino , Masculino , Fosfolipídeos/análise , Gravidez , Ratos , Ratos Sprague-Dawley
12.
Neurochem Res ; 38(9): 1809-18, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23743621

RESUMO

Quercetin is a common flavonoid polyphenol which has been shown to exert neuroprotective actions in vitro and in vivo. Though quercetin has antioxidant properties, it has been suggested that neuroprotection may be ascribed to its ability of inducing the cell's own defense mechanisms. The present study investigated whether quercetin could increase the levels of paraoxonase 2 (PON2), a mitochondrial enzyme expressed in brain cells, which has been shown to have potent antioxidant properties. PON2 protein, mRNA, and lactonase activity were highest in mouse striatal astrocytes. Quercetin increased PON2 levels, possibly by activating the JNK/AP-1 pathway. The increased PON2 levels induced by quercetin resulted in decreased oxidative stress and ensuing toxicity induced by two oxidants. The neuroprotective effect of quercetin was significantly diminished in cells from PON2 knockout mice. These findings suggest that induction of PON2 by quercetin represents an important mechanism by which this polyphenol may exert its neuroprotective action.


Assuntos
Arildialquilfosfatase/metabolismo , Corpo Estriado/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Quercetina/farmacologia , Animais , Células Cultivadas , Corpo Estriado/enzimologia , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase Via Transcriptase Reversa
13.
Adv Neurotoxicol ; 10: 1-25, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37920427

RESUMO

During the past century, a vast number of organic chemicals have been manufactured and used in industrial, agricultural, public health, consumer products, and other applications. The widespread use in bulk quantities of halogenated organic chemicals (HOCs; also called Organohalogens), including chlorinated, brominated, and fluorinated compounds, and their persistent nature have resulted in global environmental contamination. Increasing levels of HOCs in environmental media (i.e., air, water, soil, sediment) and in human tissues including adipose tissue, breast milk, and placenta continue to be a cause of ecological and human health concern. Human exposure can occur through multiple pathways including direct skin contact, inhalation, drinking water, and mainly through food consumption. HOCs exposure has been implicated in a myriad of health effects including reproductive, neurological, immunological, endocrine, behavioral, and carcinogenic effects in both wildlife and humans. In addition, recent studies indicate that exposure to HOCs contributes to obesity and type 2 diabetes. Because of these adverse health effects, several regulatory agencies either banned or placed severe restrictions on their production and usage. In turn, many industries withdrew from production and usage of HOCs. This action resulted in decline of older HOCs such as polychlorinated biphenyls (PCBs), but more recent HOCs such as polybrominated diphenyl ethers (PBDEs) and perfluoroalkyl substances (PFAS) show a steady increase/stable with time in the global environment. Based on their use pattern and their persistent chemical properties, human exposure to HOCs will likely continue. Hence, understanding human health effects and taking preventive measures for such exposures are necessary.

14.
Res Sq ; 2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36824819

RESUMO

Astrocytes release numerous factors known to contribute to the process of synaptogenesis, yet knowledge about the signals that control their release is limited. We hypothesized that neuron-derived signals stimulate astrocytes, which respond by signaling back to neurons through the modulation of astrocyte-released synaptogenic factors. Here we investigate the effect of cholinergic stimulation of astrocytes on synaptogenesis in co-cultured neurons. Using a culture system where primary rat astrocytes and primary rat neurons are first grown separately allowed us to independently manipulate astrocyte cholinergic signaling. Subsequent co-culture of pre-stimulated astrocytes with naïve neurons enabled us to assess how prior stimulation of astrocyte acetylcholine receptors uniquely modulates neuronal synapse formation. Pre-treatment of astrocytes with the acetylcholine receptor agonist carbachol increased the expression of synaptic proteins, the number of pre- and postsynaptic puncta, and the number of functional synapses in hippocampal neurons after 24 hours in co-culture. Astrocyte secretion of the synaptogenic protein thrombospondin-1 increased after cholinergic stimulation and the inhibition of the target receptor for thrombospondins prevented the observed increase in neuronal synaptic structures. Thus, we identified a novel mechanism of neuron-astrocyte-neuron communication, i.e. , neuronal release of acetylcholine stimulates astrocytes to release synaptogenic proteins leading to increased synaptogenesis in neurons. This study provides new insights into the role of neurotransmitter receptors in developing astrocytes and into our understanding of the modulation of astrocyte-induced synaptogenesis.

15.
Int J Toxicol ; 31(4): 372-9, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22710639

RESUMO

Polybrominated diphenyl ethers (PBDEs) are a class of flame retardants whose levels have increased in the environment and in human tissues in the past decades. Exposure to PBDEs has been associated with developmental neurotoxicity, endocrine dysfunction, and reproductive disorders. In spite of their widespread distribution and potential adverse health effects, only few studies have addressed the potential neurotoxicity of PBDEs. In the present study, we evaluated the cyto- and genotoxicity of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47) and decabrominated diphenyl ether (BDE-209) in human neuroblastoma cells (SK-N-MC). The DNA damage was measured using the alkaline version of the Comet assay, while specific oxidative-generated DNA damage was evaluated by a modified version of the Comet assay with the repair enzyme formamidopyrimidine glycosylase (FPG). The results show that BDE-47 and BDE-209 (5-20 µmol/L) are able to induce DNA damage in human SK-N-MC cells. Pretreatment with the antioxidant melatonin significantly reduced the DNA damage induced by both congeners. The Comet assay carried out in the presence of FPG suggests that both congeners increase purine oxidation. In all cases, BDE-47 was more potent than BDE-209. The results indicate that 2 environmentally relevant PBDEs cause DNA damage which is primarily mediated by the induction of oxidative stress and may contribute to adverse health effects.


Assuntos
Dano ao DNA/efeitos dos fármacos , Retardadores de Chama/toxicidade , Éteres Difenil Halogenados/toxicidade , Bifenil Polibromatos/toxicidade , Linhagem Celular Tumoral , Ensaio Cometa , Humanos , Neuroblastoma/induzido quimicamente , Neuroblastoma/patologia , Estresse Oxidativo/efeitos dos fármacos
16.
World J Microbiol Biotechnol ; 28(7): 2497-504, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22806155

RESUMO

Sensitivity to UV-B radiation is one of the main limitations of biological control of plant pathogens in the field. The effect of UV-B radiation on germination and leaf tissue colonization by the biological control agent Clonostachys rosea was evaluated. There were variations among C. rosea strains in sensitivity to UV-B radiation. The most tolerant strain (LQC62) had relative germination of about 60 % after irradiation of 4.2 kJ m(-2). The deleterious effects of UV-B radiation on C. rosea colonization were overcome by higher conidial concentration. In addition, the tolerance of C. rosea conidia was higher when irradiated over leaf disks compared to agar media, and this is very important information to determine the dose and spray strategies for applying C. rosea in the field.


Assuntos
Ascomicetos/efeitos da radiação , Raios Ultravioleta/efeitos adversos , Agentes de Controle Biológico
17.
J Pharmacol Exp Ther ; 338(3): 870-8, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21628419

RESUMO

Recent studies suggest that retinoids may be effective in the treatment of Alzheimer's disease, although exposure to an excess of retinoids during gestation causes teratogenesis. Cholesterol is essential for brain development, but high levels of cholesterol have been associated with Alzheimer's disease. We hypothesized that retinoic acid may affect cholesterol homeostasis in rat astrocytes, which regulate cholesterol distribution in the brain, through the up-regulation of cholesterol transporters ATP binding cassette (Abc)a1 and Abcg1. Tretinoin, 13-cis retinoic acid (13-cis-RA), 9-cis-RA, and the selective retinoid X receptor (RXR) agonist methoprene significantly increased cholesterol efflux induced by cholesterol acceptors and protein levels of Abca1 by 2.3- (± 0.25), 3.6- (± 0.42), 4.1- (± 0.5), and 1.75- (± 0.43) fold, respectively, and Abcg1 by 2.1- (± 0.26), 2.2- (± 0.33), 2.5- (± 0.23), and 2.2- (± 0.21) fold, respectively. 13-cis-RA and 9-cis-RA also significantly increased mRNA levels of Abca1 (maximal induction 7.3 ± 0.42 and 2.7 ± 0.17, respectively) and Abcg1 (maximal induction 2.0 ± 0.18 and 1.8 ± 0.09, respectively), and the levels of membrane-bound Abca1 (2.5 ± 0.3 and 2.5 ± 0.40-fold increase, respectively), whereas they significantly decreased intracellular cholesterol content without affecting cholesterol synthesis. The effect of 9-cis-RA on cholesterol homeostasis in astrocytes can be ascribed to the activation of RXR, whereas the effects of 13-cis-RA and tretinoin were independent of either RXRs or retinoic acid receptors. These findings suggest that retinoids affect cholesterol homeostasis in astrocytes and that this effect may be involved in both their therapeutic and teratogenic actions.


Assuntos
Transportadores de Cassetes de Ligação de ATP/biossíntese , Astrócitos/metabolismo , Colesterol/metabolismo , Teratogênicos/toxicidade , Tretinoína/farmacologia , Transportador 1 de Cassete de Ligação de ATP , Membro 1 da Subfamília G de Transportadores de Cassetes de Ligação de ATP , Animais , Astrócitos/efeitos dos fármacos , Biotinilação/efeitos dos fármacos , Western Blotting , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Colesterol/biossíntese , Imunoprecipitação , Isomerismo , RNA/biossíntese , RNA/isolamento & purificação , Ratos , Receptores do Ácido Retinoico/agonistas , Receptores do Ácido Retinoico/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Tretinoína/química , Tretinoína/toxicidade , Regulação para Cima/efeitos dos fármacos
18.
Toxicol Appl Pharmacol ; 256(3): 369-78, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21354197

RESUMO

The aims of this study were to characterize the expression of paraoxonase 2 (PON2) in mouse brain and to assess its antioxidant properties. PON2 levels were highest in the lung, intestine, heart and liver, and lower in the brain; in all tissues, PON2 expression was higher in female than in male mice. PON2 knockout [PON2(-/-)] mice did not express any PON2, as expected. In the brain, the highest levels of PON2 were found in the substantia nigra, the nucleus accumbens and the striatum, with lower levels in the cerebral cortex, hippocampus, cerebellum and brainstem. A similar regional distribution of PON2 activity (measured by dihydrocoumarin hydrolysis) was also found. PON3 was not detected in any brain area, while PON1 was expressed at very low levels, and did not show any regional difference. PON2 levels were higher in astrocytes than in neurons isolated from all brain regions, and were highest in cells from the striatum. PON2 activity and mRNA levels followed a similar pattern. Brain PON2 levels were highest around birth, and gradually declined. Subcellular distribution experiments indicated that PON2 is primarily expressed in microsomes and in mitochondria. The toxicity in neurons and astrocytes of agents known to cause oxidative stress (DMNQ and H(2)O(2)) was higher in cells from PON2(-/-) mice than in the same cells from wild-type mice, despite similar glutathione levels. These results indicate that PON2 is expressed in the brain, and that higher levels are found in dopaminergic regions such as the striatum, suggesting that this enzyme may provide protection against oxidative stress-mediated neurotoxicity.


Assuntos
Arildialquilfosfatase/fisiologia , Encéfalo/enzimologia , Fármacos Neuroprotetores/metabolismo , Animais , Arildialquilfosfatase/biossíntese , Arildialquilfosfatase/metabolismo , Western Blotting , Encéfalo/fisiologia , Corpo Estriado/enzimologia , Corpo Estriado/fisiologia , Feminino , Glutationa/análise , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Núcleo Accumbens/enzimologia , Núcleo Accumbens/fisiologia , Espécies Reativas de Oxigênio/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Frações Subcelulares/enzimologia , Substância Negra/enzimologia , Substância Negra/fisiologia
19.
Curr Protoc ; 1(1): e25, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33484495

RESUMO

Human paraoxonase-1 (PON1) is a high-density lipoprotein-associated enzyme with antioxidant, anti-inflammatory, and antiapoptotic roles. The ability of PON1 to hydrolyze specific organophosphate (OP) compounds and prevent accumulation of oxidized lipids in lipoproteins has prompted a large number of studies investigating PON1's role in modulating toxicity and disease. Most of these studies, however, have only focused on PON1 single nucleotide polymorphism analyses and have ignored PON1 activity levels, arguably the most important parameter in determining protection against exposure and disease. We developed a two-substrate activity assay termed "PON1 status" that reveals both the functional PON1192 genotype and plasma PON1 activity levels. While our previous studies with PON1 status demonstrated that both PON1192 functional genotype and enzymatic activity levels obtained exclusively by determining PON1 status are required for a proper evaluation of PON1's role in modulating OP exposures and risk of disease, the original PON1 status assay requires the use of highly toxic OP metabolites. As many laboratories are not prepared to handle such toxic compounds and the associated waste generated, determination of PON1 status has been limited to rather few studies. Here, we describe a PON1 status protocol that uses non-OP substrates with a resolution equivalent to that of the original PON1 status approach. We have also included useful suggestions to ensure the assays can easily be carried out in any laboratory. The protocols described here will enable a proper examination of the risk of exposure or susceptibility to disease in PON1 epidemiological studies without the need to handle highly toxic substrates. © 2021 Wiley Periodicals LLC. Basic Protocol: Determining PON1 status using non-organophosphate substrates Support Protocol 1: Experimental pathlength determination Support Protocol 2: PON1 DNA genotyping for the Q192R (rs662) polymorphism.


Assuntos
Arildialquilfosfatase , Organofosfatos , Arildialquilfosfatase/genética , Genótipo , Humanos , Lipoproteínas HDL , Polimorfismo Genético
20.
Curr Protoc ; 1(8): e220, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34370398

RESUMO

Motor deficits can significantly affect the completion of daily life activities and have a negative impact on quality of life. Consequently, motor function is an important behavioral endpoint to measure for in vivo pathophysiologic studies in a variety of research areas, such as toxicant exposure, drug development, disease characterization, and transgenic phenotyping. Evaluation of motor function is also critical to the interpretation of cognitive behavioral assays, as many rely on intact motor abilities to derive meaningful data. As such, gait analysis is an important component of behavioral research and can be achieved by manual or video-assisted methods. Manual gait analysis methods, however, are prone to observer bias and are unable to capture many critical parameters. In contrast, automated video-assisted gait analysis can quickly and reliably assess gait and locomotor abnormalities that were previously difficult to collect manually. Here, we describe the evaluation of gait and locomotion in rodents using the automated Noldus CatWalk XT system. We include a step-by-step guide for running an experiment using the CatWalk XT system and discuss theory and considerations when evaluating rodent gait. The protocol and discussion provided here act as a supplemental resource to the manual for this commercially available system and can assist CatWalk users in their experimental design and implementation. © 2021 Wiley Periodicals LLC.


Assuntos
Qualidade de Vida , Roedores , Animais , Marcha , Análise da Marcha , Locomoção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA