Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 85
Filtrar
Mais filtros

Bases de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Aging Clin Exp Res ; 36(1): 72, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38488883

RESUMO

BACKGROUND: Resilience is a crucial component of successful aging. However, which interventions might increase resilience in older adults is yet unclear. AIMS: This study aims to assess the feasibility and the physical and psychological effects of a technology-based multicomponent dance movement intervention that includes physical, cognitive, and sensory activation in older people living in community-dwelling and nursing home. METHODS: DanzArTe program consists of four sessions on a weekly basis, using a technological platform that integrates visual and auditory contents in real time. 122 participants (mean age = 76.3 ± 8.8 years, 91 females = 74.6%) from seven nursing homes and community-dwelling subjects were assessed, before and after the intervention, with the Resilience Scale-14 items (RES-14), the Multidimensional Prognostic Index (MPI), the Psychological General Well-Being Index (PGWBI-S), and the Client Satisfaction Questionnaire-8 (CSQ-8). Mann-Whitney and Wilcoxon signed-ranks tests were used for statistical analyses. RESULTS: At baseline significant differences in MPI and RES-14 between community-dwelling and nursing home residents were observed (p < 0.001 for both analyses). After the intervention, resilience significantly increased in total sample (RES-14 mean T1 = 74.6 Vs. T2 = 75.7) and in the nursing home residents (RES-14 mean T1 = 68.1 Vs. T2 = 71.8). All participants showed high overall satisfaction for DanzArTe program (CSQ-8 mean = 23.9 ± 4.4). No differences in MPI and PGWBI-S were observed. DISCUSSION: DanzArTe was a feasible intervention and high appreciated by all older adults. Nursing home residents revealed improvements in resilience after DanzArTe program. CONCLUSION: The DanzArTe technology-based multi-component intervention may improve resilience in older people living in nursing homes.


Assuntos
Testes Psicológicos , Resiliência Psicológica , Feminino , Humanos , Idoso , Idoso de 80 Anos ou mais , Casas de Saúde , Vida Independente , Cognição
2.
Am J Respir Cell Mol Biol ; 68(3): 288-301, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36252182

RESUMO

Hypoxia contributes to the exaggerated yet ineffective airway inflammation that fails to oppose infections in cystic fibrosis (CF). However, the potential for impairment of essential immune functions by HIF-1α (hypoxia-inducible factor 1α) inhibition demands a better comprehension of downstream hypoxia-dependent pathways that are amenable for manipulation. We assessed here whether hypoxia may interfere with the activity of AhR (aryl hydrocarbon receptor), a versatile environmental sensor highly expressed in the lungs, where it plays a homeostatic role. We used murine models of Aspergillus fumigatus infection in vivo and human cells in vitro to define the functional role of AhR in CF, evaluate the impact of hypoxia on AhR expression and activity, and assess whether AhR agonism may antagonize hypoxia-driven inflammation. We demonstrated that there is an important interferential cross-talk between the AhR and HIF-1α signaling pathways in murine and human CF, in that HIF-1α induction squelched the normal AhR response through an impaired formation of the AhR:ARNT (aryl hydrocarbon receptor nuclear translocator)/HIF-1ß heterodimer. However, functional studies and analysis of the AhR genetic variability in patients with CF proved that AhR agonism could prevent hypoxia-driven inflammation, restore immune homeostasis, and improve lung function. This study emphasizes the contribution of environmental factors, such as infections, in CF disease progression and suggests the exploitation of hypoxia:xenobiotic receptor cross-talk for antiinflammatory therapy in CF.


Assuntos
Fibrose Cística , Receptores de Hidrocarboneto Arílico , Humanos , Camundongos , Animais , Receptores de Hidrocarboneto Arílico/metabolismo , Hipóxia/metabolismo , Transdução de Sinais , Inflamação , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
3.
Pharmacol Res ; 198: 106994, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37972721

RESUMO

The functional interdependencies between the molecular components of a biological process demand for a network medicine platform that integrates systems biology and network science, to explore the interactions among biological components in health and disease. Access to large-scale omics datasets (genomics, transcriptomics, proteomics, metabolomics, metagenomics, phenomics, etc.) has significantly advanced our opportunity along this direction. Studies utilizing these techniques have begun to provide us with a deeper understanding of how the interaction between the intestinal microbes and their host affects the cardiovascular system in health and disease. Within the framework of a multiomics network approach, we highlight here how tryptophan metabolism may orchestrate the host-microbes interaction in cardiovascular diseases and the implications for precision medicine and therapeutics, including nutritional interventions.


Assuntos
Doenças Cardiovasculares , Triptofano , Humanos , Genômica/métodos , Proteômica/métodos , Perfilação da Expressão Gênica/métodos , Metabolômica/métodos
4.
Int J Mol Sci ; 24(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37834316

RESUMO

The pathogenesis of coronavirus disease 2019 (COVID-19) is associated with a hyperinflammatory response. The mechanisms of SARS-CoV-2-induced inflammation are scantly known. Methylglyoxal (MG) is a glycolysis-derived byproduct endowed with a potent glycating action, leading to the formation of advanced glycation end products (AGEs), the main one being MG-H1. MG-H1 exerts strong pro-inflammatory effects, frequently mediated by the receptor for AGEs (RAGE). Here, we investigated the involvement of the MG-H1/RAGE axis as a potential novel mechanism in SARS-CoV-2-induced inflammation by resorting to human bronchial BEAS-2B and alveolar A549 epithelial cells, expressing different levels of the ACE2 receptor (R), exposed to SARS-CoV-2 spike protein 1 (S1). Interestingly, we found in BEAS-2B cells that do not express ACE2-R that S1 exerted a pro-inflammatory action through a novel MG-H1/RAGE-based pathway. MG-H1 levels, RAGE and IL-1ß expression levels in nasopharyngeal swabs from SARS-CoV-2-positive and -negative individuals, as well as glyoxalase 1 expression, the major scavenging enzyme of MG, seem to support the results obtained in vitro. Altogether, our findings reveal a novel mechanism involved in the inflammation triggered by S1, paving the way for the study of the MG-H1/RAGE inflammatory axis in SARS-CoV-2 infection as a potential therapeutic target to mitigate COVID-19-associated pathogenic inflammation.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Receptor para Produtos Finais de Glicação Avançada/metabolismo , Glicoproteína da Espícula de Coronavírus , Aldeído Pirúvico/farmacologia , Aldeído Pirúvico/metabolismo , Produtos Finais de Glicação Avançada/metabolismo , Enzima de Conversão de Angiotensina 2 , Inflamação/metabolismo
5.
Am J Physiol Cell Physiol ; 323(4): C1036-C1043, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36036448

RESUMO

The recent COVID-19 pandemic has dramatically brought the pitfalls of airborne pathogens to the attention of the scientific community. Not only viruses but also bacteria and fungi may exploit air transmission to colonize and infect potential hosts and be the cause of significant morbidity and mortality in susceptible populations. The efforts to decipher the mechanisms of pathogenicity of airborne microbes have brought to light the delicate equilibrium that governs the homeostasis of mucosal membranes. The microorganisms already thriving in the permissive environment of the respiratory tract represent a critical component of this equilibrium and a potent barrier to infection by means of direct competition with airborne pathogens or indirectly via modulation of the immune response. Moving down the respiratory tract, physicochemical and biological constraints promote site-specific expansion of microbes that engage in cross talk with the local immune system to maintain homeostasis and promote protection. In this review, we critically assess the site-specific microbial communities that an airborne pathogen encounters in its hypothetical travel along the respiratory tract and discuss the changes in the composition and function of the microbiome in airborne diseases by taking fungal and SARS-CoV-2 infections as examples. Finally, we discuss how technological and bioinformatics advancements may turn microbiome analysis into a valuable tool in the hands of clinicians to predict the risk of disease onset, the clinical course, and the response to treatment of individual patients in the direction of personalized medicine implementation.


Assuntos
COVID-19 , Pandemias , Bactérias , Humanos , Pulmão , SARS-CoV-2
6.
Infect Immun ; 90(4): e0004822, 2022 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35311544

RESUMO

It is becoming increasingly clear that the communities of microorganisms that populate the surfaces exposed to the external environment, termed microbiota, are key players in the regulation of pathogen-host cross talk affecting the onset as well as the outcome of infectious diseases. We have performed a multicenter, prospective, observational study in which nasal and oropharyngeal swabs were collected for microbiota predicting the risk of invasive fungal infections (IFIs) in patients with hematological malignancies. Here, we demonstrate that the nasal and oropharyngeal microbiota are different, although similar characteristics differentiate high-risk from low-risk samples at both sites. Indeed, similar to previously published results on the oropharyngeal microbiota, high-risk samples in the nose were characterized by low diversity, a loss of beneficial bacteria, and an expansion of potentially pathogenic taxa, in the presence of reduced levels of tryptophan (Trp). At variance with oropharyngeal samples, however, low Trp levels were associated with defective host-derived kynurenine production, suggesting reduced tolerance mechanisms at the nasal mucosal surface. This was accompanied by reduced levels of the chemokine interleukin-8 (IL-8), likely associated with a reduced recruitment of neutrophils and impaired fungal clearance. Thus, the nasal and pharyngeal microbiomes of hematological patients provide complementary information that could improve predictive tools for the risk of IFI in hematological patients.


Assuntos
Infecções Fúngicas Invasivas , Microbiota , Bactérias , Humanos , Nariz/microbiologia , Estudos Prospectivos
7.
Int J Mol Sci ; 23(9)2022 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-35563625

RESUMO

Varicocele (VC) is the most common abnormality identified in men evaluated for hypofertility. Increased levels of reactive oxygen species (ROS) and reduced antioxidants concentrations are key contributors in varicocele-mediated hypofertility. Moreover, inflammation and alterations in testicular immunity negatively impact male fertility. In particular, NLRP3 inflammasome activation was hypothesized to lead to seminal inflammation, in which the levels of specific cytokines, such as IL-1ß and IL-18, are overexpressed. In this review, we described the role played by oxidative stress (OS), inflammation, and NLRP3 inflammasome activation in VC disease. The consequences of ROS overproduction in testis, including inflammation, lipid peroxidation, mitochondrial dysfunction, chromatin damage, and sperm DNA fragmentation, leading to abnormal testicular function and failed spermatogenesis, were highlighted. Finally, we described some therapeutic antioxidant strategies, with recognized beneficial effects in counteracting OS and inflammation in testes, as possible therapeutic drugs against varicocele-mediated hypofertility.


Assuntos
Varicocele , Antioxidantes/farmacologia , Humanos , Inflamassomos/metabolismo , Inflamação , Masculino , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Estresse Oxidativo , Espécies Reativas de Oxigênio/farmacologia , Varicocele/tratamento farmacológico
8.
Infect Immun ; 89(8): e0010521, 2021 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-33782152

RESUMO

The ability to predict invasive fungal infections (IFI) in patients with hematological malignancies is fundamental for successful therapy. Although gut dysbiosis is known to occur in hematological patients, whether airway dysbiosis also contributes to the risk of IFI has not been investigated. Nasal and oropharyngeal swabs were collected for functional microbiota characterization in 173 patients with hematological malignancies recruited in a multicenter, prospective, observational study and stratified according to the risk of developing IFI. A lower microbial richness and evenness were found in the pharyngeal microbiota of high-risk patients that were associated with a distinct taxonomic and metabolic profile. A murine model of IFI provided biologic plausibility for the finding that loss of protective anaerobes, such as Clostridiales and Bacteroidetes, along with an apparent restricted availability of tryptophan, is causally linked to the risk of IFI in hematologic patients and indicates avenues for antimicrobial stewardship and metabolic reequilibrium in IFI.


Assuntos
Doenças Hematológicas/complicações , Microbiota , Micoses/etiologia , Faringe/microbiologia , Pneumonia/etiologia , Animais , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Modelos Animais de Doenças , Neoplasias Hematológicas/complicações , Humanos , Metagenoma , Metagenômica/métodos , Camundongos , Micoses/diagnóstico , Micoses/tratamento farmacológico , Pneumonia/diagnóstico , Pneumonia/tratamento farmacológico , Medição de Risco , Fatores de Risco
9.
Int J Mol Sci ; 22(6)2021 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-33804124

RESUMO

The circadian clock driven by the daily light-dark and temperature cycles of the environment regulates fundamental physiological processes and perturbations of these sophisticated mechanisms may result in pathological conditions, including cancer. While experimental evidence is building up to unravel the link between circadian rhythms and tumorigenesis, it is becoming increasingly apparent that the response to antitumor agents is similarly dependent on the circadian clock, given the dependence of each drug on the circadian regulation of cell cycle, DNA repair and apoptosis. However, the molecular mechanisms that link the circadian machinery to the action of anticancer treatments is still poorly understood, thus limiting the application of circadian rhythms-driven pharmacological therapy, or chronotherapy, in the clinical practice. Herein, we demonstrate the circadian protein period 1 (PER1) and the tumor suppressor p53 negatively cross-regulate each other's expression and activity to modulate the sensitivity of cancer cells to anticancer treatments. Specifically, PER1 physically interacts with p53 to reduce its stability and impair its transcriptional activity, while p53 represses the transcription of PER1. Functionally, we could show that PER1 reduced the sensitivity of cancer cells to drug-induced apoptosis, both in vitro and in vivo in NOD scid gamma (NSG) mice xenotransplanted with a lung cancer cell line. Therefore, our results emphasize the importance of understanding the relationship between the circadian clock and tumor regulatory proteins as the basis for the future development of cancer chronotherapy.


Assuntos
Carcinogênese/genética , Neoplasias/genética , Proteínas Circadianas Period/genética , Proteína Supressora de Tumor p53/genética , Células A549 , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Ritmo Circadiano/efeitos dos fármacos , Cisplatino/farmacologia , Docetaxel/farmacologia , Cronofarmacoterapia , Etoposídeo/farmacologia , Humanos , Camundongos , Neoplasias/patologia , Neoplasias/terapia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445184

RESUMO

The microbiome, i.e., the communities of microbes that inhabit the surfaces exposed to the external environment, participates in the regulation of host physiology, including the immune response against pathogens. At the same time, the immune response shapes the microbiome to regulate its composition and function. How the crosstalk between the immune system and the microbiome regulates the response to fungal infection has remained relatively unexplored. We have previously shown that strict anaerobes protect from infection with the opportunistic fungus Aspergillus fumigatus by counteracting the expansion of pathogenic Proteobacteria. By resorting to immunodeficient mouse strains, we found that the lung microbiota could compensate for the lack of B and T lymphocytes in Rag1-/- mice by skewing the composition towards an increased abundance of protective anaerobes such as Clostridia and Bacteroidota. Conversely, NSG mice, with major defects in both the innate and adaptive immune response, showed an increased susceptibility to infection associated with a low abundance of strict anaerobes and the expansion of Proteobacteria. Further exploration in a murine model of chronic granulomatous disease, a primary form of immunodeficiency characterized by defective phagocyte NADPH oxidase, confirms the association of lung unbalance between anaerobes and Proteobacteria and the susceptibility to aspergillosis. Consistent changes in the lung levels of short-chain fatty acids between the different strains support the conclusion that the immune system and the microbiota are functionally intertwined during Aspergillus infection and determine the outcome of the infection.


Assuntos
Aspergilose/imunologia , Aspergillus fumigatus/imunologia , Pulmão/microbiologia , Imunidade Adaptativa , Animais , Aspergilose/microbiologia , Aspergillus fumigatus/fisiologia , Ácidos Graxos Voláteis/imunologia , Interações Hospedeiro-Patógeno , Imunidade Inata , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Microbiota
11.
Int J Mol Sci ; 22(12)2021 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-34207085

RESUMO

Inflammasomes are powerful cytosolic sensors of environmental stressors and are critical for triggering interleukin-1 (IL-1)-mediated inflammatory responses. However, dysregulation of inflammasome activation may lead to pathological conditions, and the identification of negative regulators for therapeutic purposes is increasingly being recognized. Anakinra, the recombinant form of the IL-1 receptor antagonist, proved effective by preventing the binding of IL-1 to its receptor, IL-1R1, thus restoring autophagy and dampening NLR family pyrin domain containing 3 (NLRP3) activity. As the generation of mitochondrial reactive oxidative species (ROS) is a critical upstream event in the activation of NLRP3, we investigated whether anakinra would regulate mitochondrial ROS production. By profiling the activation of transcription factors induced in murine alveolar macrophages, we found a mitochondrial antioxidative pathway induced by anakinra involving the manganese-dependent superoxide dismutase (MnSOD) or SOD2. Molecularly, anakinra promotes the binding of SOD2 with the deubiquitinase Ubiquitin Specific Peptidase 36 (USP36) and Constitutive photomorphogenesis 9 (COP9) signalosome, thus increasing SOD2 protein longevity. Functionally, anakinra and SOD2 protects mice from pulmonary oxidative inflammation and infection. On a preclinical level, anakinra upregulates SOD2 in murine models of chronic granulomatous disease (CGD) and cystic fibrosis (CF). These data suggest that protection from mitochondrial oxidative stress may represent an additional mechanism underlying the clinical benefit of anakinra and identifies SOD2 as a potential therapeutic target.


Assuntos
Inflamassomos/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/farmacologia , Proteínas Recombinantes/farmacologia , Superóxido Dismutase/metabolismo , Animais , Células Cultivadas , Fibrose Cística/etiologia , Fibrose Cística/metabolismo , Fibrose Cística/patologia , Modelos Animais de Doenças , Doença Granulomatosa Crônica/etiologia , Doença Granulomatosa Crônica/metabolismo , Doença Granulomatosa Crônica/patologia , Macrófagos Alveolares/metabolismo , Macrófagos Alveolares/patologia , Camundongos , Camundongos Knockout , Mitocôndrias/metabolismo , Oxirredução , Estresse Oxidativo , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo/metabolismo , Células RAW 264.7 , Espécies Reativas de Oxigênio/metabolismo , Fatores de Transcrição/metabolismo
12.
Mol Genet Metab ; 131(1-2): 171-180, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32792227

RESUMO

Primary Hyperoxaluria type I (PH1) is a rare disease caused by mutations in the AGXT gene encoding alanine:glyoxylate aminotransferase (AGT), a liver enzyme involved in the detoxification of glyoxylate, the failure of which results in accumulation of oxalate and kidney stones formation. The role of protein misfolding in the AGT deficit caused by most PH1-causing mutations is increasingly being recognized. In addition, the genetic background in which a mutation occurs is emerging as a critical risk factor for disease onset and/or severity. Based on these premises, in this study we have analyzed the clinical, biochemical and cellular effects of the p.Ile56Asn mutation, recently described in a PH1 patient, as a function of the residue at position 11, a hot-spot for both polymorphic (p.Pro11Leu) and pathogenic (p.Pro11Arg) mutations. We have found that the p.Ile56Asn mutation induces a structural defect mostly related to the apo-form of AGT. The effects are more pronounced when the substitution of Ile56 is combined with the p.Pro11Leu and, at higher degree, the p.Pro11Arg mutation. As compared with the non-pathogenic forms, AGT variants display reduced expression and activity in mammalian cells. Vitamin B6, a currently approved treatment for PH1, can overcome the effects of the p.Ile56Asn mutation only when it is associated with Pro at position 11. Our results provide a first proof that the genetic background influences the effects of PH1-causing mutations and the responsiveness to treatment and suggest that molecular and cellular studies can integrate clinical data to identify the best therapeutic strategy for PH1 patients.


Assuntos
Hiperoxalúria Primária/tratamento farmacológico , Hiperoxalúria Primária/genética , Fígado/efeitos dos fármacos , Transaminases/genética , Linhagem Celular , Cristalografia por Raios X , Glioxilatos/metabolismo , Humanos , Hiperoxalúria Primária/patologia , Fígado/metabolismo , Fígado/patologia , Mutação/genética , Conformação Proteica , Dobramento de Proteína/efeitos dos fármacos , Relação Estrutura-Atividade , Transaminases/ultraestrutura , Vitamina B 6/química , Vitamina B 6/farmacologia
13.
Int J Mol Sci ; 21(16)2020 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-32823705

RESUMO

The chemical processes taking place in humans intersects the myriad of metabolic pathways occurring in commensal microorganisms that colonize the body to generate a complex biochemical network that regulates multiple aspects of human life. The role of tryptophan (Trp) metabolism at the intersection between the host and microbes is increasingly being recognized, and multiple pathways of Trp utilization in either direction have been identified with the production of a wide range of bioactive products. It comes that a dysregulation of Trp metabolism in either the host or the microbes may unbalance the production of metabolites with potential pathological consequences. The ability to redirect the Trp flux to restore a homeostatic production of Trp metabolites may represent a valid therapeutic strategy for a variety of pathological conditions, but identifying metabolic checkpoints that could be exploited to manipulate the Trp metabolic network is still an unmet need. In this review, we put forward the hypothesis that pyridoxal 5'-phosphate (PLP)-dependent enzymes, which regulate multiple pathways of Trp metabolism in both the host and in microbes, might represent critical nodes and that modulating the levels of vitamin B6, from which PLP is derived, might represent a metabolic checkpoint to re-orienteer Trp flux for therapeutic purposes.


Assuntos
Interações Hospedeiro-Patógeno , Fosfato de Piridoxal/metabolismo , Triptofano/metabolismo , Animais , Bactérias/metabolismo , Humanos , Mamíferos/metabolismo , Vitamina B 6/metabolismo
14.
Int J Mol Sci ; 21(16)2020 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-32796686

RESUMO

The innate immune system represents the host's first-line defense against pathogens, dead cells or environmental factors. One of the most important inflammatory pathways is represented by the activation of the NOD-like receptor (NLR) protein family. Some NLRs induce the assembly of large caspase-1-activating complexes called inflammasomes. Different types of inflammasomes have been identified that can respond to distinct bacterial, viral or fungal infections; sterile cell damage or other stressors, such as metabolic imbalances. Epigenetic regulation has been recently suggested to provide a complementary mechanism to control inflammasome activity. This regulation can be exerted through at least three main mechanisms, including CpG DNA methylation, histones post-translational modifications and noncoding RNA expression. The repression or promotion of expression of different inflammasomes (NLRP1, NLRP2, NLRP3, NLRP4, NLRP6, NLRP7, NLRP12 and AIM2) through epigenetic mechanisms determines the development of pathologies with variable severity. For example, our team recently explored the role of microRNAs (miRNAs) targeting and modulating the components of the inflammasome as potential biomarkers in bladder cancer and during therapy. This suggests that the epigenetic control of inflammasome-related genes could represent a potential target for further investigations of molecular mechanisms regulating inflammatory pathways.


Assuntos
Epigênese Genética , Inflamassomos/genética , Animais , Doença/genética , Humanos , Inflamassomos/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo
15.
Mediators Inflamm ; 2018: 7396136, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30510489

RESUMO

Mast cells are increasingly being recognized as crucial cells in the response of the organism to environmental agents. Interestingly, the ability of mast cells to sense and respond to external cues is modulated by the microenvironment that surrounds mast cells and influences their differentiation. The scenario that is emerging unveils a delicate equilibrium that balances the effector functions of mast cells to guarantee host protection without compromising tissue homeostasis. Among the environmental components able to mold mast cells and fine-tune their effector functions, the microorganisms that colonize the human body, collectively known as microbiome, certainly play a key role. Indeed, microorganisms can regulate not only the survival, recruitment, and maturation of mast cells but also their activity by setting the threshold required for the exploitation of their different effector functions. Herein, we summarize the current knowledge about the mechanisms underlying the ability of the microorganisms to regulate mast cell physiology and discuss potential deviations that result in pathological consequences. We will discuss the pivotal role of the aryl hydrocarbon receptor in sensing the environment and shaping mast cell adaptation at the host-microbe interface.


Assuntos
Mastócitos/metabolismo , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Interações Hospedeiro-Patógeno/fisiologia , Humanos , Microbiota/fisiologia
16.
Mediators Inflamm ; 2018: 6195958, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29692681

RESUMO

Phagocytes fight fungi using canonical and noncanonical, also called LC3-associated phagocytosis (LAP), autophagy pathways. However, the outcomes of autophagy/LAP in shaping host immune responses appear to greatly vary depending on fungal species and cell types. By allowing efficient pathogen clearance and/or degradation of inflammatory mediators, autophagy proteins play a broad role in cellular and immune homeostasis during fungal infections. Indeed, defects in autophagic machinery have been linked with aberrant host defense and inflammatory states. Thus, understanding the molecular mechanisms underlying the relationship between the different forms of autophagy may offer a way to identify drugable molecular signatures discriminating between selective recognition of cargo and host protection. In this regard, IFN-γ and anakinra are teaching examples of successful antifungal agents that target the autophagy machinery. This article provides an overview of the role of autophagy/LAP in response to fungi and in their infections, regulation, and therapeutic exploitation.


Assuntos
Autofagia/fisiologia , Fagocitose/fisiologia , Animais , Humanos , Interferon gama/metabolismo , Proteína Antagonista do Receptor de Interleucina 1/metabolismo , Fagócitos/metabolismo , Fagócitos/fisiologia
17.
J Immunol ; 189(3): 1500-9, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22730532

RESUMO

Upon LPS binding, TLR4 activates a MyD88-dependent pathway leading to the transcriptional activation of proinflammatory genes, as well as a MyD88-independent/TRIF-dependent pathway, responsible for the transcriptional induction of IFN-ß. Previous findings delineated that human neutrophils are unable to induce the transcription of IFN-ß in response to TLR4 stimulation. Because neutrophils do not express protein kinase C ε, a molecule recently reported as essential for initiating the MyD88-independent/TRIF-dependent pathway, we optimized an electroporation method to transfect PKCε into neutrophils with very high efficiency. By doing so, a significant IFN-ß mRNA expression was induced, in the absence of LPS stimulation, not only in PKCε-overexpressing neutrophils but also in cells transfected with a series of empty DNA plasmids; however, LPS further upregulated the IFN-ß transcript levels in plasmid-transfected neutrophils, regardless of PKCε overexpression. Phosphoimmunoblotting studies, as well as chromatin immunoprecipitation assays targeting the IFN-ß promoter, revealed that IFN-ß mRNA induction occurred through the cooperative action of IRF3, activated by transfected DNA, and NF-κB, activated by LPS. Additional immunoblotting and coimmunoprecipitation studies revealed that neutrophils constitutively express various cytosolic DNA sensors, including IFN-inducible protein 16, leucine-rich repeat (in Flightless I) interacting protein-1, and DDX41, as well as that IFN-inducible protein 16 is the intracellular receptor recognizing transfected DNA. Consistently, infection of neutrophils with intracellular pathogens, such as Bartonella henselae, Listeria monocytogenes, Legionella pneumophila, or adenovirus type 5, promoted a marked induction of IFN-ß mRNA expression. Taken together, these data raise questions about the role of PKCε in driving the MyD88-independent/TRIF-dependent response and indicate that human neutrophils are able to recognize and respond to microbial cytosolic DNA.


Assuntos
DNA/biossíntese , Interferon beta/biossíntese , Neutrófilos/imunologia , Plasmídeos/genética , Transdução de Sinais/imunologia , Receptor 4 Toll-Like/fisiologia , Ativação Transcricional/imunologia , Regulação para Cima/imunologia , Adenovírus Humanos/genética , Adenovírus Humanos/imunologia , Bartonella henselae/genética , Bartonella henselae/imunologia , Células Cultivadas , Citosol/imunologia , DNA/genética , Células HEK293 , Humanos , Interferon beta/genética , Legionella pneumophila/genética , Legionella pneumophila/imunologia , Listeria monocytogenes/genética , Listeria monocytogenes/imunologia , Neutrófilos/metabolismo , Neutrófilos/microbiologia , RNA Mensageiro/biossíntese , Transdução de Sinais/genética , Transfecção/métodos , Regulação para Cima/genética
18.
Pharmaceuticals (Basel) ; 17(3)2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38543153

RESUMO

Patients with cystic fibrosis (PwCF) have recently experienced an unprecedented breakthrough with the adoption of modulator therapy in clinical practice. This remarkable achievement has led to the reconsideration of disease management as the increased life expectancy has gradually shifted the attention over a spectrum of extra-pulmonary manifestations that become prevalent in the aging population. It comes to be that complementary approaches that target patient co-morbidities are needed for the optimal clinical management of PwCF. A strategy would be to adjuvate the cystic fibrosis transmembrane conductance regulator (CFTR) in performing its functions in the different organs in which it is expressed. Solute carrier family 26 (SLC26) members appear ideal in this context. Indeed, they not only cooperate with CFTR in the organ-dependent regulation of ion fluxes but physically interact with it to reciprocally modulate their function. In this opinion, we summarize available evidence pointing to a physical and functional interaction between CFTR and SLC26 members, with a particular focus on SLC26A6 for its wider expression and broader anion selectivity, and then discuss how restoring the physical interaction between CFTR and SLC26A6 might be beneficial in the treatment of PwCF in the era of modulator therapy.

19.
Front Med (Lausanne) ; 11: 1388959, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903817

RESUMO

Phenotypic drug discovery (PDD) involves screening compounds for their effects on cells, tissues, or whole organisms without necessarily understanding the underlying molecular targets. PDD differs from target-based strategies as it does not require knowledge of a specific drug target or its role in the disease. This approach can lead to the discovery of drugs with unexpected therapeutic effects or applications and allows for the identification of drugs based on their functional effects, rather than through a predefined target-based approach. Ultimately, disease definitions are mostly symptom-based rather than mechanism-based, and the therapeutics should be likewise. In recent years, there has been a renewed interest in PDD due to its potential to address the complexity of human diseases, including the holistic picture of multiple metabolites engaging with multiple targets constituting the central hub of the metabolic host-microbe interactions. Although PDD presents challenges such as hit validation and target deconvolution, significant achievements have been reached in the era of big data. This article explores the experiences of researchers testing the effect of a thymic peptide hormone, thymosin alpha-1, in preclinical and clinical settings and discuss how its therapeutic utility in the precision medicine era can be accommodated within the PDD framework.

20.
Front Mol Biosci ; 11: 1386598, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38721278

RESUMO

Humans interact with a multitude of microorganisms in various ecological relationships, ranging from commensalism to pathogenicity. The same applies to fungi, long recognized for their pathogenic roles in infection-such as in invasive fungal diseases caused, among others, by Aspergillus fumigatus and Candida spp.-and, more recently, for their beneficial activities as an integral part of the microbiota. Indeed, alterations in the fungal component of the microbiota, or mycobiota, have been associated with inflammatory, infectious and metabolic diseases, and cancer. Whether acting as opportunistic pathogens or symbiotic commensals, fungi possess a complex enzymatic repertoire that intertwines with that of the host. In this metabolic cross-talk, fungal enzymes may be unique, thus providing novel metabolic opportunities to the host, or, conversely, produce toxic metabolites. Indeed, administration of fungal probiotics and fungi-derived products may be beneficial in inflammatory and infectious diseases, but fungi may also produce a plethora of toxic secondary metabolites, collectively known as mycotoxins. Fungal enzymes may also be homologues to human enzymes, but nevertheless embedded in fungal-specific metabolic networks, determined by all the interconnected enzymes and molecules, quantitatively and qualitatively specific to the network, such that the activity and metabolic effects of each enzyme remain unique to fungi. In this Opinion, we explore the concept that targeting this fungal metabolic unicity, either in opportunistic pathogens or commensals, may be exploited to develop novel therapeutic strategies. In doing so, we present our recent experience in different pathological settings that ultimately converge on relevant trans-kingdom metabolic differences.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA