Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
Mais filtros

Bases de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(6): 104807, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37172730

RESUMO

Here, we report a bioluminescence resonance energy transfer (BRET) assay as a novel way to investigate the binding of unlabeled ligands to the human transient receptor potential mucolipin 1 (hTRPML1), a lysosomal ion channel involved in several genetic diseases and cancer progression. This novel BRET assay can be used to determine equilibrium and kinetic binding parameters of unlabeled compounds to hTRPML1 using intact human-derived cells, thus complementing the information obtained using functional assays based on ion channel activation. We expect this new BRET assay to expedite the identification and optimization of cell-permeable ligands that interact with hTRPML1 within the physiologically relevant environment of lysosomes.


Assuntos
Técnicas de Transferência de Energia por Ressonância de Bioluminescência , Canais de Potencial de Receptor Transitório , Humanos , Técnicas de Transferência de Energia por Ressonância de Bioluminescência/métodos , Ligantes , Lisossomos/metabolismo , Canais de Potencial de Receptor Transitório/metabolismo
2.
Chembiochem ; : e202400506, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38923811

RESUMO

Autophagic flux plays a crucial role in various diseases. Recently, the lysosomal ion channel TRPML1 has emerged as a promising target in lysosomal storage diseases, such as mucolipidosis. The discovery of mucolipin synthetic agonist-1 (ML-SA1) has expanded our understanding of TRPML1's function and its potential therapeutic uses. However, ML-SA1 is a racemate with limited cellular potency and poor water solubility. In this study, we synthetized rac-ML-SA1, separated the enantiomers by chiral liquid chromatography and determined their absolute configuration by vibrational circular dichroism (VCD). In addition, we focused on investigating the impact of each enantiomer of ML-SA1 on the TRPML1-TFEB axis. Our findings revealed that (S)-ML-SA1 acts as an agonist for TRPML1 at the lysosomal membrane. This activation prompts transcription factor EB (TFEB) to translocate from the cytosol to the nucleus in a dose-dependent manner within live cells. Consequently, this signaling pathway enhances the expression of coordinated lysosomal expression and regulation (CLEAR) genes and activates autophagic flux. Our study presents evidence for the potential use of (S)-ML-SA1 in the development of new therapies for lysosomal storage diseases that target TRPML1.

3.
Bioorg Med Chem ; 98: 117561, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38157838

RESUMO

The dual-specificity protein kinase MKK3 has been implicated in tumor cell proliferation and survival, yet its precise role in cancer remains inconclusive. A critical step in elucidating the kinase's involvement in disease biology is the identification of potent, cell-permeable kinase inhibitors. Presently, MKK3 lacks a dedicated tool compound for these purposes, along with validated methods for the facile screening, identification, and optimization of inhibitors. In this study, we have developed a TR-FRET-based enzymatic assay for the detection of MKK3 activity in vitro and a BRET-based assay to assess ligand binding to this enzyme within intact human cells. These assays were instrumental in identifying hit compounds against MKK3 that share a common chemical scaffold, sourced from a library of bioactive kinase inhibitors. Initial hits were subsequently expanded through the synthesis of novel analogs. The resulting structure-activity relationship (SAR) was rationalized using molecular dynamics simulations against a homology model of MKK3. We expect our findings to expedite the development of novel, potent, selective, and bioactive inhibitors, thus facilitating investigations into MKK3's role in various cancers.


Assuntos
Neoplasias , Pirimidinas , Humanos , MAP Quinase Quinase 3 , Pirimidinas/química , Relação Estrutura-Atividade , Fosforilação , Proliferação de Células , Inibidores de Proteínas Quinases/química
4.
Antimicrob Agents Chemother ; 67(11): e0058923, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37819090

RESUMO

Drug resistance to commercially available antimalarials is a major obstacle in malaria control and elimination, creating the need to find new antiparasitic compounds with novel mechanisms of action. The success of kinase inhibitors for oncological treatments has paved the way for the exploitation of protein kinases as drug targets in various diseases, including malaria. Casein kinases are ubiquitous serine/threonine kinases involved in a wide range of cellular processes such as mitotic checkpoint signaling, DNA damage response, and circadian rhythm. In Plasmodium, it is suggested that these protein kinases are essential for both asexual and sexual blood-stage parasites, reinforcing their potential as targets for multi-stage antimalarials. To identify new putative PfCK2α inhibitors, we utilized an in silico chemogenomic strategy involving virtual screening with docking simulations and quantitative structure-activity relationship predictions. Our investigation resulted in the discovery of a new quinazoline molecule (542), which exhibited potent activity against asexual blood stages and a high selectivity index (>100). Subsequently, we conducted chemical-genetic interaction analysis on yeasts with mutations in casein kinases. Our chemical-genetic interaction results are consistent with the hypothesis that 542 inhibits yeast Cka1, which has a hinge region with high similarity to PfCK2α. This finding is in agreement with our in silico results suggesting that 542 inhibits PfCK2α via hinge region interaction.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Plasmodium , Antimaláricos/farmacologia , Caseína Quinase II/antagonistas & inibidores , Malária/tratamento farmacológico , Malária/parasitologia , Malária Falciparum/parasitologia , Plasmodium/metabolismo , Plasmodium falciparum
5.
J Org Chem ; 88(13): 9475-9487, 2023 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-37290116

RESUMO

Two routes to the antimalarial diaminopyrimidine P218 were developed based on the C-6 metalation of suitable 2,4-dichloro-5-alkoxy pyrimidines using (TMP)2Zn·2MgCl2·2LiCl base. One approach involves a late-stage modification of the C-6 position, while the other allows for tail fragment modification of P218. Both routes have proven reliable in synthesizing P218, as well as eight analogues. These innovative strategies have the potential to contribute to the search for new antimalarial drugs.


Assuntos
Antimaláricos , Zinco , Antimaláricos/farmacologia , Pirimidinas/farmacologia
6.
Bioorg Med Chem Lett ; 60: 128588, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35104640

RESUMO

The Protein Kinase N proteins (PKN1, PKN2 and PKN3) are Rho GTPase effectors. They are involved in several biological processes such as cytoskeleton organization, cell mobility, adhesion, and cell cycle. Recently PKNs have been reported as essential for survival in several tumor cell lines, including prostate and breast cancer. Here, we report the development of dihydropyrrolopyridinone-based inhibitors for PKN2 and its closest homologue, PKN1, and their associated structure-activity relationship (SAR). Our studies identified a range of molecules with high potency exemplified by compound 8 with Ki = 8 nM for PKN2 and 14x selectivity over PKN1. Membrane permeability and target engagement for PKN2 were assessed by a NanoBRET cellular assay. Importantly, good selectivity across the wider human kinome and other kinase family members was achieved. These compounds provide strong starting points for lead optimization to PKN1/2 development compounds.


Assuntos
Antineoplásicos/farmacologia , Desenvolvimento de Medicamentos , Proteína Quinase C/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Piridonas/farmacologia , Pirróis/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Células HeLa , Humanos , Simulação de Acoplamento Molecular , Estrutura Molecular , Proteína Quinase C/metabolismo , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Piridonas/síntese química , Piridonas/química , Pirróis/síntese química , Pirróis/química , Relação Estrutura-Atividade
7.
Bioorg Med Chem Lett ; 68: 128764, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35504513

RESUMO

The discovery of potent and selective inhibitors for understudied kinases can provide relevant pharmacological tools to illuminate their biological functions. DYRK1A and DYRK1B are protein kinases linked to chronic human diseases. Current DYRK1A/DYRK1B inhibitors also antagonize the function of related protein kinases, such as CDC2-like kinases (CLK1, CLK2, CLK4) and DYRK2. Here, we reveal narrow spectrum dual inhibitors of DYRK1A and DYRK1B based on a benzothiophene scaffold. Compound optimization exploited structural differences in the ATP-binding sites of the DYRK1 kinases and resulted in the discovery of 3n, a potent and cell-permeable DYRK1A/DYRK1B inhibitor. This compound has a different scaffold and a narrower off-target profile compared to current DYRK1A/DYRK1B inhibitors. We expect the benzothiophene derivatives described here to aid establishing DYRK1A/DYRK1B cellular functions and their role in human pathologies.


Assuntos
Proteínas Serina-Treonina Quinases , Proteínas Tirosina Quinases , Humanos , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Quinases , Proteínas Tirosina Quinases/metabolismo , Tiofenos
8.
Int J Mol Sci ; 21(21)2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33147789

RESUMO

This paper focuses on new derivatives bearing an oxetane group to extend accessible chemical space for further identification of kinase inhibitors. The ability to modulate kinase activity represents an important therapeutic strategy for the treatment of human illnesses. Known as a nonclassical isoster of the carbonyl group, due to its high polarity and great ability to function as an acceptor of hydrogen bond, oxetane seems to be an attractive and underexplored structural motif in medicinal chemistry.


Assuntos
Éteres Cíclicos/farmacologia , Estrutura Molecular , Doenças Autoimunes/tratamento farmacológico , Química Orgânica , Elétrons , Éteres Cíclicos/química , Humanos , Ligação de Hidrogênio , Concentração Inibidora 50 , Espectroscopia de Ressonância Magnética , Modelos Químicos , Fenol/química , Estereoisomerismo , Relação Estrutura-Atividade
9.
Molecules ; 25(2)2020 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-31941153

RESUMO

The calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) activates CAMK1, CAMK4, AMPK, and AKT, leading to numerous physiological responses. The deregulation of CAMKK2 is linked to several diseases, suggesting the utility of CAMKK2 inhibitors for oncological, metabolic and inflammatory indications. In this work, we demonstrate that STO-609, frequently described as a selective inhibitor for CAMKK2, potently inhibits a significant number of other kinases. Through an analysis of literature and public databases, we have identified other potent CAMKK2 inhibitors and verified their activities in differential scanning fluorimetry and enzyme inhibition assays. These inhibitors are potential starting points for the development of selective CAMKK2 inhibitors and will lead to tools that delineate the roles of this kinase in disease biology.


Assuntos
Benzimidazóis/química , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina , Naftalimidas/química , Inibidores de Proteínas Quinases/química , Animais , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/química , Humanos
10.
Protein Expr Purif ; 146: 78-84, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29360581

RESUMO

The PR-1 proteins (pathogenesis-related protein 1) are involved in plant defense mechanisms against various pathogens. The genome of cacao (Theobroma cacao) encodes 14 PR-1 proteins, named TcPR-1a to TcPR-1n. Two of them, TcPR-1f and TcPR-1g, have a C-terminal expansion with high similarity to protein kinase domains, suggesting a receptor-like kinase (RLK) protein architecture. Moreover, TcPR-1g is highly expressed during cacao response to Witches' Broom Disease, caused by the fungus Moniliopthora perniciosa. Here we describe a structural genomics approach to clone, express and purify the kinase domains of TcPR-1f and TcPR-1g. Escherichia coli BL21(DE3)-R3 cells were used for protein expression and co-expression of Lambda Protein Phosphatase was critical for successfully obtaining soluble recombinant protein. We expect that the ability to express and purify the kinase domains of TcPR-1f and TcPR-1g will further our understanding of the role these proteins play during cacao defense response.


Assuntos
Cacau/genética , Clonagem Molecular/métodos , Proteínas de Plantas/genética , Sequência de Aminoácidos , Cacau/química , Escherichia coli/genética , Doenças das Plantas/genética , Doenças das Plantas/microbiologia , Proteínas de Plantas/química , Domínios Proteicos , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Alinhamento de Sequência
11.
Nucleic Acids Res ; 44(14): 6981-93, 2016 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-27307602

RESUMO

Pathogenic bacteria such as Haemophilus influenzae, a major cause of lower respiratory tract diseases, must cope with a range of electrophiles generated in the host or by endogenous metabolism. Formaldehyde is one such compound that can irreversibly damage proteins and DNA through alkylation and cross-linking and interfere with redox homeostasis. Its detoxification operates under the control of HiNmlR, a protein from the MerR family that lacks a specific sensor region and does not bind metal ions. We demonstrate that HiNmlR is a thiol-dependent transcription factor that modulates H. influenzae response to formaldehyde, with two cysteine residues (Cys54 and Cys71) identified to be important for its response against a formaldehyde challenge. We obtained crystal structures of HiNmlR in both the DNA-free and two DNA-bound forms, which suggest that HiNmlR enhances target gene transcription by twisting of operator DNA sequences in a two-gene operon containing overlapping promoters. Our work provides the first structural insights into the mechanism of action of MerR regulators that lack sensor regions.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Formaldeído/metabolismo , Haemophilus influenzae/metabolismo , Compostos de Sulfidrila/metabolismo , Proteínas de Bactérias/química , Cristalografia por Raios X , DNA Bacteriano/química , DNA Bacteriano/metabolismo , Proteínas de Ligação a DNA/química , RNA Polimerases Dirigidas por DNA/metabolismo , Regulação Bacteriana da Expressão Gênica , Haemophilus influenzae/genética , Inativação Metabólica/genética , Cinética , Modelos Moleculares , Regiões Operadoras Genéticas/genética , Regiões Promotoras Genéticas , Ligação Proteica , Relação Estrutura-Atividade , Fatores de Transcrição/metabolismo , Transcrição Gênica
12.
Molecules ; 23(5)2018 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-29783765

RESUMO

We demonstrate for the first time that 4H-1,2,6-thiadiazin-4-one (TDZ) can function as a chemotype for the design of ATP-competitive kinase inhibitors. Using insights from a co-crystal structure of a 3,5-bis(arylamino)-4H-1,2,6-thiadiazin-4-one bound to calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2), several analogues were identified with micromolar activity through targeted displacement of bound water molecules in the active site. Since the TDZ analogues showed reduced promiscuity compared to their 2,4-dianilinopyrimidine counter parts, they represent starting points for development of highly selective kinase inhibitors.


Assuntos
Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Tiadiazóis/síntese química , Tiadiazóis/farmacologia , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/química , Domínio Catalítico , Cristalografia por Raios X , Humanos , Modelos Moleculares , Simulação de Acoplamento Molecular , Estrutura Molecular , Inibidores de Proteínas Quinases/química , Tiadiazóis/química , Água/química
13.
Nat Chem Biol ; 10(1): 35-41, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24212134

RESUMO

The relative stability of divalent first-row transition metal ion complexes, as defined by the Irving-Williams series, poses a fundamental chemical challenge for selectivity in bacterial metal ion acquisition. Here we show that although the substrate-binding protein of Streptococcus pneumoniae, PsaA, is finely attuned to bind its physiological substrate manganese, it can also bind a broad range of other divalent transition metal cations. By combining high-resolution structural data, metal-binding assays and mutational analyses, we show that the inability of open-state PsaA to satisfy the preferred coordination chemistry of manganese enables the protein to undergo the conformational changes required for cargo release to the Psa permease. This is specific for manganese ions, whereas zinc ions remain bound to PsaA. Collectively, these findings suggest a new ligand binding and release mechanism for PsaA and related substrate-binding proteins that facilitate specificity for divalent cations during competition from zinc ions, which are more abundant in biological systems.


Assuntos
Proteínas de Membrana Transportadoras/metabolismo , Metais/metabolismo , Sítios de Ligação , Cátions , Proteínas de Membrana Transportadoras/química , Modelos Moleculares , Streptococcus pneumoniae/metabolismo
14.
Mol Microbiol ; 91(4): 834-51, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24428621

RESUMO

Streptococcus pneumoniae is a globally significant human pathogen responsible for nearly 1 million deaths annually. Central to the ability of S. pneumoniae to colonize and mediate disease in humans is the acquisition of zinc from the host environment. Zinc uptake in S. pneumoniae occurs via the ATP-binding cassette transporter AdcCB, and, unusually, two zinc-binding proteins, AdcA and AdcAII. Studies have suggested that these two proteins are functionally redundant, although AdcA has remained uncharacterized by biochemical methods. Here we show that AdcA is a zinc-specific substrate-binding protein (SBP). By contrast with other zinc-binding SBPs, AdcA has two zinc-binding domains: a canonical amino-terminal cluster A-I zinc-binding domain and a carboxy-terminal zinc-binding domain, which has homology to the zinc-chaperone ZinT from Gram-negative organisms. Intriguingly, this latter feature is absent from AdcAII and suggests that the two zinc-binding SBPs of S. pneumoniae employ different modalities in zinc recruitment. We further show that AdcAII is reliant upon the polyhistidine triad proteins for zinc in vitro and in vivo. Collectively, our studies suggest that, despite the overlapping roles of the two SBPs in zinc acquisition, they may have unique mechanisms in zinc homeostasis and act in a complementary manner during host colonization.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/metabolismo , Homeostase , Streptococcus pneumoniae/metabolismo , Zinco/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ligação Proteica , Estrutura Terciária de Proteína , Streptococcus pneumoniae/genética
15.
J Med Chem ; 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38959455

RESUMO

The pyrazolo[1,5-a]pyrimidine scaffold is a promising scaffold to develop potent and selective CSNK2 inhibitors with antiviral activity against ß-coronaviruses. Herein, we describe the discovery of a 1,2,4-triazole group to substitute a key amide group for CSNK2 binding present in many potent pyrazolo[1,5-a]pyrimidine inhibitors. Crystallographic evidence demonstrates that the 1,2,4-triazole replaces the amide in forming key hydrogen bonds with Lys68 and a water molecule buried in the ATP-binding pocket. This isosteric replacement improves potency and metabolic stability at a cost of solubility. Optimization for potency, solubility, and metabolic stability led to the discovery of the potent and selective CSNK2 inhibitor 53. Despite excellent in vitro metabolic stability, rapid decline in plasma concentration of 53 in vivo was observed and may be attributed to lung accumulation, although in vivo pharmacological effect was not observed. Further optimization of this novel chemotype may validate CSNK2 as an antiviral target in vivo.

16.
J Med Chem ; 67(11): 8609-8629, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38780468

RESUMO

Vaccinia-related kinase 1 (VRK1) and the δ and ε isoforms of casein kinase 1 (CK1) are linked to various disease-relevant pathways. However, the lack of tool compounds for these kinases has significantly hampered our understanding of their cellular functions and therapeutic potential. Here, we describe the structure-based development of potent inhibitors of VRK1, a kinase highly expressed in various tumor types and crucial for cell proliferation and genome integrity. Kinome-wide profiling revealed that our compounds also inhibit CK1δ and CK1ε. We demonstrate that dihydropteridinones 35 and 36 mimic the cellular outcomes of VRK1 depletion. Complementary studies with existing CK1δ and CK1ε inhibitors suggest that these kinases may play overlapping roles in cell proliferation and genome instability. Together, our findings highlight the potential of VRK1 inhibition in treating p53-deficient tumors and possibly enhancing the efficacy of existing cancer therapies that target DNA stability or cell division.


Assuntos
Inibidores de Proteínas Quinases , Proteínas Serina-Treonina Quinases , Pteridinas , Humanos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/metabolismo , Pteridinas/farmacologia , Pteridinas/química , Pteridinas/síntese química , Peptídeos e Proteínas de Sinalização Intracelular/antagonistas & inibidores , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proliferação de Células/efeitos dos fármacos , Relação Estrutura-Atividade , Caseína Quinase Idelta/antagonistas & inibidores , Caseína Quinase Idelta/metabolismo , Caseína Quinase 1 épsilon/antagonistas & inibidores , Caseína Quinase 1 épsilon/metabolismo , Linhagem Celular Tumoral
17.
Cells ; 12(2)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36672221

RESUMO

The serine/threonine protein kinase calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) plays critical roles in a range of biological processes. Despite its importance, only a handful of inhibitors of CAMKK2 have been disclosed. Having a selective small molecule tool to interrogate this kinase will help demonstrate that CAMKK2 inhibition can be therapeutically beneficial. Herein, we disclose SGC-CAMKK2-1, a selective chemical probe that targets CAMKK2.

18.
ACS Infect Dis ; 8(8): 1449-1467, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35815896

RESUMO

New antibiotics are urgently needed to counter the emergence of antimicrobial-resistant pathogenic bacteria. A major challenge in antibiotic drug discovery is to turn potent biochemical inhibitors of essential bacterial components into effective antimicrobials. This difficulty is underpinned by a lack of methods to investigate the physicochemical properties needed for candidate antibiotics to permeate the bacterial cell envelope and avoid clearance by the action of bacterial efflux pumps. To address these issues, here we used a target engagement assay to measure the equilibrium and kinetic binding parameters of antibiotics targeting dihydrofolate reductase (DHFR) in live bacteria. We also used this assay to identify novel DHFR ligands having antimicrobial activity. We validated this approach using the Gram-negative bacteria Escherichia coli and the emerging human pathogen Mycobacterium abscessus. We expect the use of target engagement assays in bacteria to expedite the discovery and progression of novel, cell-permeable antibiotics with on-target activity.


Assuntos
Antibacterianos , Anti-Infecciosos , Antibacterianos/química , Anti-Infecciosos/farmacologia , Escherichia coli/metabolismo , Bactérias Gram-Negativas , Humanos , Tetra-Hidrofolato Desidrogenase/química
19.
Plant Direct ; 6(11): e460, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36447653

RESUMO

One hundred twenty-nine protein kinases, selected to represent the diversity of the rice (Oryza sativa) kinome, were cloned and tested for expression in Escherichia coli. Forty of these rice kinases were purified and screened using differential scanning fluorimetry (DSF) against 627 diverse kinase inhibitors, with a range of structures and activities targeting diverse human kinases. Thirty-seven active compounds were then tested for their ability to modify primary root development in Arabidopsis. Of these, 14 compounds caused a significant reduction of primary root length compared with control plants. Two of these inhibitory compounds bind to the predicted orthologue of Arabidopsis PSKR1, one of two receptors for PSK, a small sulfated peptide that positively controls root development. The reduced root length phenotype could not be rescued by the exogenous addition of the PSK peptide, suggesting that chemical treatment may inhibit both PSKR1 and its closely related receptor PSKR2. Six of the compounds acting as root growth inhibitors in Arabidopsis conferred the same effect in rice. Compound RAF265 (CHIR-265), previously shown to bind the human kinase BRAF (B-Raf proto-oncogene, serine/threonine kinase), also binds to nine highly conserved rice kinases tested. The binding of human and rice kinases to the same compound suggests that human kinase inhibitor sets will be useful for dissecting the function of plant kinases.

20.
J Med Chem ; 65(4): 3173-3192, 2022 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-35167750

RESUMO

Monopolar spindle kinase 1 (MPS1/TTK) is a key element of the mitotic checkpoint and clinically evaluated as a target in the treatment of aggressive tumors such as triple-negative breast cancer. While long drug-target residence times have been suggested to be beneficial in the context of therapeutic MPS1 inhibition, no irreversible inhibitors have been reported. Here we present the design and characterization of the first irreversible covalent MPS1 inhibitor, RMS-07, targeting a poorly conserved cysteine in the kinase's hinge region. RMS-07 shows potent MPS1 inhibitory activity and selectivity against all protein kinases with an equivalent cysteine but also in a broader kinase panel. We demonstrate potent cellular target engagement and pronounced activity against various cancer cell lines. The covalent binding mode was validated by mass spectrometry and an X-ray crystal structure. This proof of MPS1 covalent ligandability may open new avenues for the design of MPS1-specific chemical probes or drugs.


Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Cristalografia por Raios X , Desenho de Fármacos , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Humanos , Técnicas In Vitro , Masculino , Espectrometria de Massas , Camundongos , Microssomos Hepáticos , Modelos Moleculares , Neoplasias de Mama Triplo Negativas/tratamento farmacológico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA